Nav: Home

Nanoparticles can grow in cubic shape

April 04, 2016

The efficiency of many applications deriving from natural sciences depends dramatically on a finite-size property of nanoparticles, so-called surface-to-volume ratio. The larger the surface of nanoparticles for the same volume is achieved, the more efficiently nanoparticles can interact with the surrounding substance. However, thermodynamic equilibrium forces nanostructures to minimize open surface driven by energy minimization principle. This basic principle predicts that the only shape of nanoparticles can be spherical or close-to-spherical ones.

Nature, however, does not always follow the simple principles. An intensive collaboration between University of Helsinki, Finland, and Okinawa Institute of Science and Technology, Japan, showed that in some condition iron nanoparticles can grow in cubic shape. The scientists also succeeded in disclosing the mechanisms behind this.

"Now we have a recipe how to synthesize cubic shapes with high surface-to-volume ratio which opens the door for practical applications", says Dr. Flyura Djurabekova from the University of Helsinki.

In the researcher's work, experiment and theory were brought together via a new mathematical model, which gives a recipe on how to select macroscopic experimental conditions to achieve the formation of nanoparticles of desired shape.

The computational work carried out in the group of Djurabekova showed the importance of kinetical processes in this surprising phenomenon, namely the competition between surface diffusion and deposition rate of atoms. The simulations showed how an originally spherical nucleus transforms into a perfect cube.

The results were recently published in the high-impact factor journal ACS Nano.
-end-
Junlei Zhao, Ekaterina Baibuz, Jerome Vernieres, Panagiotis Grammatikopoulos, Ville Jansson, Morten Nagel, Stephan Steinhauer, Mukhles Sowwan, Antti Kuronen, Kai Nordlund, and Flyura Djurabekova, Formation Mechanism of Fe Nanocubes by Magnetron Sputtering Inert Gas Condensation, ACS Nano, Article ASAP, DOI: 10.1021/acsnano.6b01024, Publication Date (Web): March 10, 2016, Copyright © 2016 American Chemical Society

http://pubs.acs.org/doi/suppl/10.1021/acsnano.6b01024

Image text: Originally close-to-spherical iron nanoparticle nuclei grow in magnetron sputter chambers either cubic or spheres. The research revealed a specific regime of temperature and deposition rates leading to thermodynamically unexpected cubic shapes of final nanoparticles.

Image: Panagiotis Grammatikopoulos, Okinawa Institute for Science and Technology

For more information:

Dr. Flyura Djurabekova, Department of Physics, University of Helsinki, +358-(0)2941-50084, flyura. djurabekova@helsinki.fi

With kind regards,
Minna Meriläinen-Tenhu, Press Officer, University of Helsinki, @MinnaMeriTenhu, +358 50 415 0316, minna.merilainen@helsinki.fi

University of Helsinki

Related Nanoparticles Articles:

Chemists perform surgery on nanoparticles
A team of chemists led by Carnegie Mellon's Rongchao Jin has for the first time conducted site-specific surgery on a nanoparticle.
Nanoparticles remain unpredictable
The way that nanoparticles behave in the environment is extremely complex.
Gold standards for nanoparticles
KAUST researchers reveal how small organic 'citrate' ions can stabilize gold nanoparticles, assisting research on the structures' potential.
Lipid nanoparticles for gene therapy
Twenty-five years have passed since the publication of the first work on solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) as a system for delivering drugs.
Nanoparticles hitchhiking their way along strands of hair
In shampoo ads, hair always looks like a shiny, smooth surface.
More Nanoparticles News and Nanoparticles Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#535 Superior
Apologies for the delay getting this week's episode out! A technical glitch slowed us down, but all is once again well. This week, we look at the often troubling intertwining of science and race: its long history, its ability to persist even during periods of disrepute, and the current forms it takes as it resurfaces, leveraging the internet and nationalism to buoy itself. We speak with Angela Saini, independent journalist and author of the new book "Superior: The Return of Race Science", about where race science went and how it's coming back.