Nav: Home

Common antibiotic may help to prevent or treat PTSD

April 04, 2017

The common antibiotic doxycycline can disrupt the formation of negative associations in the brain, according to new research from UCL and the University of Zurich.

The study, published in Molecular Psychiatry, was a pre-registered, placebo-controlled, double-blind randomised controlled trial in 76 healthy volunteers.

In the first session, participants were given either doxycycline or a placebo and learnt to associate a certain colour with an electric shock. A week later they were shown the colours again, accompanied by a loud sound but no shocks, and their fear responses were measured.*

The fear response was 60% lower in participants who had doxycycline in the first session compared to those who had the placebo, suggesting that the fear memory was significantly suppressed by the drug. Other cognitive measures including sensory memory and attention were not affected.

"When we talk about reducing fear memory, we are not talking about deleting the memory of what actually happened," explains lead author Professor Dominik Bach (UCL Wellcome Centre for Neuroimaging, Max Planck UCL Centre for Computational Psychiatry and Ageing Research and University of Zurich Division of Clinical Psychiatry Research). "The participants may not forget that they received a shock when the screen was red, but they 'forget' to be instinctively scared when they next see a red screen. Learning to fear threats is an important ability for any organism, helping us to avoid dangers such as predators. Over-prediction of threat, however, can cause tremendous suffering and distress in anxiety disorders such as PTSD."

Post-traumatic stress disorder (PTSD) is a term for a broad range of psychological symptoms that can develop after someone experiences or witnesses a traumatic event. PTSD is caused by an overactive fear memory, and the new research shows that doxycycline can reduce the fear memory response in healthy volunteers.

"We have demonstrated a proof-of-principle for an entirely new treatment strategy for PTSD," explains Professor Bach. "The theory is based on the recent discovery that our brains need proteins outside nerve cells, called matrix enzymes, to form memories. Matrix enzymes are found throughout the body, and their over-activity is involved in certain immune diseases and cancers. To treat such diseases, we already have clinically approved drugs that block these enzymes, including the antibiotic doxycycline, so we wanted to see if they could help to prevent fear memories from forming in the brain. Our results support this theory, opening up an exciting avenue of research that might help us to find treatments for PTSD.

"Using drugs to prevent PTSD would be challenging, since in the real world we don't know when a traumatic event is about to occur. However, there is growing evidence that people's memories and associations can be changed after the event when they experience or imagine similar situations. This is called 'reconsolidation', and we now plan to test the effect of doxycycline on reconsolidation of fear memories. If this is successful, we would hope to apply the technique to more clinically realistic models of PTSD within a few years."

The work was supported by the Swiss National Science Foundation, University of Zurich and Wellcome.

*In the first session, participants were given either doxycycline or a placebo and put in front of a computer. The screen would flash either blue or red, and one of the colours was associated with a 50% chance of receiving a painful electric shock. This happened 160 times, with the colours appearing in random order, so that participants learnt to associate the 'bad' colour with the shock.

A week later, under no medication, participants returned to repeat the experiment. This time there were no electric shocks, but a loud sound played after either colour was shown. Participants' fear responses were measured by tracking their eye blinks, as this is an instinctive response to sudden threats. The fear memory response was calculated by subtracting the baseline startle response -- the response to the sound on the 'good' colour - from the response to the sound when the 'bad' colour was showing.
-end-


University College London

Related Memory Articles:

How long does memory last? For shape memory alloys, the longer the better
Scientists captured live action details of the phase transitions of shape memory alloys, giving them a better idea how to improve their properties for applications.
Seeing it both ways: Visual perspective in memory
Think of a memory from your childhood. Are you seeing the memory through your own eyes, or can you see yourself, while viewing that child as if you were an observer?
A NEAT discovery about memory
UAB researchers say over expression of NEAT1, an noncoding RNA, appears to diminish the ability of older brains to form memories.
Molecular memory can be used to increase the memory capacity of hard disks
Researchers at the University of Jyväskylä have taken part in an international British-Finnish-Chinese collaboration where the first molecule capable of remembering the direction of a magnetic above liquid nitrogen temperatures has been prepared and characterized.
Memory transferred between snails
Memories can be transferred between organisms by extracting ribonucleic acid (RNA) from a trained animal and injecting it into an untrained animal, as demonstrated in a study of sea snails published in eNeuro.
More Memory News and Memory Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...