Nav: Home

Finger prosthesis provides clues to brain health

April 04, 2017

In a collaboration between Swedish and Italian researchers, the aim was to analyse how the brain interprets information from a virtual experience of touch, created by a finger prosthesis with artificial sensation. The result was - completely unexpectedly - a new method for measuring brain health.

"We were able to measure the cooperation between neural networks in a very precise and detailed way. We can also see how the entire network changes when new information comes in", says neuroscience researcher Henrik Jörntell from Lund University in Sweden.

The Pisa-Lund group generated artificial touch experiences with a bionic fingertip currently used for robotic upper limb neuroprostheses. These artificial touch experiences were provided to the touch sensor nerves of the skin in the rat, as a kind of neuroscientific playback of information to the brain. Using a high-resolution analysis of how individual neurons and their connected brain networks processed this touch information, designed by neurocomputational scientist Alberto Mazzoni and physics scientist Anton Spanne, the groups got an unexpected insight into the brain representations of the external world experienced through touch. Single neurons in the brain are able to convey much more information than was previously thought and can interact to generate potentially super rich representations of sensory stimuli.

"This knowledge will be embodied into a novel generation of sensitive robotic hands able to convey fine tactile information to amputees, says lead bioroboticist Calogero Oddo. Such robotic arms with human-like richness of touch are also being used to perform complex tasks in surgical robots, rescue, services and industry."

Brain function is made up of complex neural networks. In cases of neurological diseases like Alzheimer's, stroke and Parkinson's, the function of these networks changes. It has been difficult, however, to study exactly what happens, as well as to evaluate different treatments. The method developed by these Swedish and Italian researchers could mean a big step forward in this respect.

The prosthesis was made to touch various objects, which generate different patterns of electrical signals. These were subsequently fed into a part of the paw of an anesthetized rat, and then, with the help of electrodes in the brain and advanced analytical techniques, the researchers were able to measure the reactions in the neuronal networks. They managed to record the reactions at very high resolution, as the electrical signals were carefully controlled and could therefore be delivered multiple times with exact reproducibility.

"If you use real-life experiences of touch, it is impossible to achieve the same conditions every time. It is enough, for instance, that the stimulus that provides the sensation of touch is moved some ten micrometres across the skin in order for the neural patterns to be completely different", says Henrik Jörntell.

For the Italian group, and for all others involved in research on advanced prostheses, the method provides a new tool for exploring the sensations the prostheses can provide. As for the Lund researchers, the method provides a tool for studying how neurons cooperate inside a healthy brain and in animal models with different neurological diseases. The fact that the cooperation involves the sense of touch is in this context less important; when it comes to neurological diseases (and even if the damage is local, as in the case of stroke) the entire neural network is disrupted. The brain's response to sensory impressions can therefore reflect the health of the entire brain.

"The tool is unique in its resolution, in its ability to reproduce the tests in the exact same way, and in that the brain activity can be measured objectively and precisely", says Henrik Jörntell.
The research was carried out by SSSA, with lead scientists Calogero Oddo and Silvestro Micera, and by LU, with lead scientist Henrik Jörntell, who had responsibilities on projects supported by the Italian Ministry of Foreign Affairs and International Cooperation, Directorate General for Country Promotion (Economy, Culture and Science) - Unit for Scientific and Technological Cooperation and the Swedish Research Council, via the Italy-Sweden bilateral research project J52I15000030005 SensBrain, by the EU Grant FET 611687 NEBIAS Project, by the EU Grant FP7-NMP 228844 NANOBIOTOUCH project, by the national project B81J12002680008 PRIN/HandBot, and by Hjärnfonden and the Swedish Research Council.

Lund University

Related Brain Articles:

Study describes changes to structural brain networks after radiotherapy for brain tumors
Researchers compared the thickness of brain cortex in patients with brain tumors before and after radiation therapy was applied and found significant dose-dependent changes in the structural properties of cortical neural networks, at both the local and global level.
Blue Brain team discovers a multi-dimensional universe in brain networks
Using a sophisticated type of mathematics in a way that it has never been used before in neuroscience, a team from the Blue Brain Project has uncovered a universe of multi-dimensional geometrical structures and spaces within the networks of the brain.
New brain mapping tool produces higher resolution data during brain surgery
Researchers have developed a new device to map the brain during surgery and distinguish between healthy and diseased tissues.
Newborn baby brain scans will help scientists track brain development
Scientists have today published ground-breaking scans of newborn babies' brains which researchers from all over the world can download and use to study how the human brain develops.
New test may quickly identify mild traumatic brain injury with underlying brain damage
A new test using peripheral vision reaction time could lead to earlier diagnosis and more effective treatment of mild traumatic brain injury, often referred to as a concussion.
More Brain News and Brain Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...