Nav: Home

Touch-sensitive, elastic fibers offer new interface for electronics

April 04, 2017

Researchers from North Carolina State University have created elastic, touch-sensitive fibers that can interface with electronic devices.

"Touch is a common way to interact with electronics using keyboards and touch screens," says Michael Dickey, a professor of chemical and biomolecular engineering at NC State and corresponding author of a paper describing the work. "We have created soft and stretchable fibers that can detect touch, as well as strain and twisting. These microscopic fibers may be useful for integrating electronics in new places, including wearable devices."

The new fibers are made of tube-like polymer strands that contain a liquid metal alloy, eutectic gallium and indium (EGaIn). The strands are only a few hundred microns in diameter, which is slightly thicker than a human hair.

Each fiber consists of three strands. One is completely filled with EGaIn, one is two-thirds filled with EGaIn, and one is only one-third filled with EGaIn. The slim tubes are then twisted together into a tight spiral.

The touch-responsive fiber works because of capacitance, or the phenomenon in which electric charge is stored between two conductors separated by an insulator. For example, when your finger (which is a conductor) touches the screen of your smartphone (which is an insulator), it changes the capacitance between your finger and the electronic material beneath the screen. The smartphone's technology then interprets that change in capacitance as a command to open an app or to type on the keypad.

Similarly, when your finger touches the elastic fiber, it changes the capacitance between your finger and the EGaIn inside the insulating polymer strands. By moving your finger along the fiber, the capacitance will vary, depending on how many of the strands contain EGaIn at that point in the fiber.

This effectively gives you the ability to send different electronic signals depending on which part of the fiber you touch. A video demonstrating the sensor can be seen at https://www.youtube.com/watch?v=arW21gazHQc.

The researchers also developed a sensor using two polymer strands, both of which are completely filled with EGaIn.

Again, the strands are twisted into a tight spiral. Increasing the number of twists elongates the elastic strands and brings the EGaIn in the two tubes closer together. This changes the capacitance between the two strands.

"We can tell how many times the fiber has been twisted based on the change in capacitance," Dickey says. "That's valuable for use in torsion sensors, which measure how many times, and how quickly, something revolves. The advantage of our sensor is that it is built from elastic materials and can therefore be twisted 100 times more - two orders of magnitude - than existing torsion sensors."
-end-
The paper, "Stretchable Capacitive Sensors of Torsion, Strain, and Touch Using Double Helix Liquid Metal Fibers," is published in the journal Advanced Functional Materials. Lead author of the paper is Christopher Cooper, an undergraduate at NC State. The paper was co-authored by Kuralamudhan Arutselvan, Daniel Armstrong, Yiliang Lin, and Mohammad Rashed Khan, who are Ph.D. students at NC State; by Ying Liu, a postdoctoral researcher at NC State; and by Jan Genzer, the S. Frank and Doris Culberson Distinguished Professor of Chemical and Biomolecular Engineering at NC State. The work was supported by Army Natick under grant number W911QY-14-C-0033.

North Carolina State University

Related Electronics Articles:

Plant inspiration could lead to flexible electronics
Versatile, light-weight materials that are both strong and resilient are crucial for the development of flexible electronics, such as bendable tablets and wearable sensors.
Nanowires, the future of electronics
The current demand for small-sized electronic devices is calling for fresh approaches in their design.
A new spin on electronics
A University of Utah-led team has discovered that a class of 'miracle materials
Dawn of organic single crystal electronics
Researchers at the Institute for Molecular Science, National Institutes of Natural Sciences (Japan) have developed a method for high performance doping of organic single crystal.
Light has new capacity for electronics
In 'Minority Report,' the protagonist uses gloves that give him the power of virtual manipulation.
More Electronics News and Electronics Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...