Nav: Home

Disrupted stress hormone signals in bone cells protect from diet-induced obesity

April 04, 2017

ORLANDO -- A high-calorie diet, even without a high amount of fat, causes bone loss, and both high-calorie and high-fat diets induce excessive fat gain and insulin resistance, a new study conducted in mice finds. Study results, to be presented Tuesday at ENDO 2017, the Endocrine Society's 99th annual meeting in Orlando, Fla., found that some of these negative effects happened because of an increase in the actions of glucocorticoids, or stress hormones, in the skeleton.

"Overconsumption of an energy-dense--high-calorie--diet is a major public health challenge," said study investigator Sarah Kim, a Ph.D. candidate at ANZAC Research Institute and the University of Sydney in Australia. "Energy-dense diets cause obesity, diabetes and poor skeletal health. However, it is unclear whether these adverse health outcomes are due to the high calories or the fat component of diets, or both."

To pinpoint the cause, the researchers studied three different diets in mice, 12 to 15 per group. The diets were (1) a high-calorie, standard-fat diet (14 percent of total calories from fat); (2) a high-calorie, high-fat diet (43 percent fat); and (3) standard rodent chow (14 percent fat but fewer calories per gram of food than the first diet). Most of the fat was unsaturated, Kim said.

Some of the mice were normal wild-type mice, and some were genetically modified mice that have lessened glucocorticoid signaling in their bones. Glucocorticoids, Kim explained, are steroid hormones that not only play a role in the stress response but also are important in the regulation of energy balance, immune function, cognition, memory and the skeletal system. The researchers wanted to know whether turning off glucocorticoid signaling in bone could protect against diet-induced metabolic disturbances.

The investigators found that regardless of fat content, the high-calorie diets caused bone loss to a similar extent. Bone loss was apparent on micro-computed tomography (micro-CT), which Kim said is a very accurate way of analyzing bone loss in mice. The researchers identified that this bone loss in mice was mostly due to increased glucocorticoid signaling in the bone-forming cells (osteoblasts and osteocytes). In addition, she said they found no difference between high-fat and standard-fat high-calorie diets in inducing excessive fat gain and insulin resistance. Insulin resistance is the body's inability to clear glucose (sugar) from the blood in response to the hormone insulin.

When the researchers switched off glucocorticoid signaling in the bone-forming cells, the mice were reportedly not only protected from diet-induced bone loss but also remained lean, had better insulin sensitivity and had improved glucose handling, also known as glucose tolerance. Kim said this finding shows that glucocorticoid signaling in the skeleton partly mediates bone loss, insulin resistance and glucose intolerance.

"These findings are important because they establish a new paradigm regarding how high-calorie and high-fat diets exert their detrimental effects," Kim said. "These results also highlight that the skeleton has more than just a mechanical function in the body; it is intimately involved in controlling energy metabolism."

She concluded: "Understanding the underlying mechanism behind diet-induced metabolic disturbances, such as obesity and glucose intolerance, will aid in the development of novel therapies targeted at preventing and treating these metabolic disorders."
-end-
Endocrinologists are at the core of solving the most pressing health problems of our time, from diabetes and obesity to infertility, bone health, and hormone-related cancers. The Endocrine Society is the world's oldest and largest organization of scientists devoted to hormone research and physicians who care for people with hormone-related conditions.

The Society has more than 18,000 members, including scientists, physicians, educators, nurses and students in 122 countries. To learn more about the Society and the field of endocrinology, visit our site at http://www.endocrine.org. Follow us on Twitter at @TheEndoSociety and @EndoMedia.

The Endocrine Society

Related Insulin Resistance Articles:

Connecting the dots between insulin resistance, unhealthy blood vessels and cancer
This research highlights biological mechanisms driven by insulin resistance that impair blood vessel health and may be shared by both cancer and cardiovascular disease.
Insulin resistance may lead to faster cognitive decline
A new Tel Aviv University study published in the Journal of Alzheimer's Disease finds that insulin resistance, caused in part by obesity and physical inactivity, is also linked to a more rapid decline in cognitive performance.
Insulin resistance may lead to faster cognitive decline
A new Tel Aviv University study finds that insulin resistance, caused in part by obesity and physical inactivity, is also linked to a more rapid decline in cognitive performance.
Insulin resistance and polycystic ovary syndrome
Insulin resistance represents a major issue for people with polycystic ovary syndrome (PCOS), an endocrine disorder which is very common in young women, according to a new analysis of available data carried out by Dr.
Does interleukin-10 reduce age-related insulin resistance?
New research published online in The FASEB Journal suggests that the anti-inflammatory molecule IL-10 may do more than just reduce inflammation.
Insulin resistance reversed by removal of protein
By removing the protein galectin-3 (Gal3), a team of investigators led by University of California School of Medicine researchers were able to reverse diabetic insulin resistance and glucose intolerance in mouse models of obesity and diabetes.
Study identifies new pathways involved in development of insulin resistance
This month in the JCI, a study led by Daniel Kelly at the Sanford Burnham Prebys Medical Discovery Institute determined that the transcription factor MondoA regulates key pathways controlling glucose uptake and fat accumulation in muscle cells.
Natural killer cells help to drive inflammation and insulin resistance
In obesity, the body's immune system can treat tissues as if they are suffering from a low-grade chronic infection.
Penn researchers identify cause of insulin resistance in type 2 diabetics
A new link between high levels of certain amino acids and type 2 diabetes was found by a team led by researchers from the Perelman School of Medicine at the University of Pennsylvania, using mouse and human muscle and blood samples to evaluate the mechanisms that lead to insulin resistance.
Novel mechanism of insulin resistance in type 2 diabetes
Insensitivity to insulin, also called insulin resistance, is associated with type 2 diabetes and affects several cell types and organs in the body.

Related Insulin Resistance Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Setbacks
Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".