Nav: Home

New research could help speed up the 3-D printing process

April 04, 2017

BINGHAMTON, NY - A team of researchers from Binghamton University, State University of New York and MIT have identified some bottlenecks in 3D printers, that, if improved, could speed up the entire process.

A research team led by Professor John Hart from the Department of Mechanical Engineering and Laboratory for Manufacturing and Productivity at the Massachusetts Institute of Technology, and including Binghamton Assistant Professor of Mechanical Engineering Scott Schiffres, found that many conventional desktop and professional AM systems build objects at about 10-20 cubic centimeters per hour when printing at a 0.2 millimeter thickness. One limitation of the system is a pinch-wheel mechanism used to feed building material. That wheel is limited in the force it can use (about 60 newtons) and the feed rate (about nine millimeters per second) in order to fully melt building material.

"We found that the rate at which a polymer melts is limiting in many implementations," said Schiffres. "The pressure required to push the polymer through the nozzle is a sharp function of temperature. If the core is not hot enough, the printer will not be able to squeeze the polymer through the nozzle."

"The work has implications for how to scale up additive manufacturing and the trade-off between higher-resolution printing and speed. We hope it will inspire future work to investigate pre-heating of the polymer, and printing with multiple extruders," added Schiffres.

The work was supported by a grant from the Lockheed Martin Corporation, while the Department of Defense, the MIT International Design Centre (IDC) and MIT MakerWorks also supported the project.

MIT graduate students Jamison Go and Adam Stevens are co-authors of the paper.

The paper, titled "Rate Limits of Additive Manufacturing by Fused Filament Fabrication and Guidelines for High-Throughput System Design," is currently available online in Additive Manufacturing.
-end-


Binghamton University

Related Polymer Articles:

World first: New polymer goes for a walk when illuminated
Scientists have developed a new material that can undulate and therefore propel itself forward under the influence of light.
Polymer-coated silicon nanosheets -- an alternative to graphene
Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene.
New polymer additive could revolutionize plastics recycling
Only 2 percent of the 78 million tons of manufactured plastics are currently recycled into similar products because polyethylene (PE) and polypropylene (PP), which account for two-thirds of the world's plastics, have different chemical structures and cannot be efficiently repurposed together.
Responsive filtration membranes by polymer self-assembly
Polymer self-assembly is a crucial tool for manufacturing membranes using scalable methods, enabling easier commercialization.
Biodegradable polymer coating for implants
Medical implants often carry surface substrates that release active substances or to which biomolecules or cells can adhere better.
Praise for polymer science
Engineer Glenn Fredrickson receives the William H. Walker Award for Excellence in Contributions to Chemical Engineering Literature.
When it comes to polymer fragility, size does matter
By combining a number of tools and techniques, a team of researchers from the US, Italy and China was able to find a more complete picture of the glass transition phenomenon in polymers and to point out where the polymers differ from small molecular liquids.
Better, stronger: Polymer breakthrough to improve things we use everyday
Medicine, mobile phones, computers and clothes could all be enhanced using the process for making paint, according to research by the University of Warwick.
CWRU researcher scaling up knotty polymer research
Researchers at Case Western Reserve University developed a technique that produces a long chain molecule in the shape of a trefoil knot.
New 3-D printed polymer can convert methane to methanol
Lawrence Livermore National Laboratory scientists have combined biology and 3-D printing to create the first reactor that can continuously produce methanol from methane at room temperature and pressure.

Related Polymer Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Setbacks
Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".