Nav: Home

The inner lives of molecules

April 04, 2017

WASHINGTON, D.C., April 4, 2017 -- Quantum mechanics rules. It dictates how particles and forces interact, and thus how atoms and molecules work -- for example, what happens when a molecule goes from a higher-energy state to a lower-energy one. But beyond the simplest molecules, the details become very complex.

"Quantum mechanics describes how all this stuff works," said Paul Hockett of the National Research Council of Canada. "But as soon as you go beyond the two-body problem, you can't solve the equations." So, physicists must rely on computer simulations and experiments.

Now, he and an international team of researchers from Canada, the U.K. and Germany have developed a new experimental technique to take 3-D images of molecules in action. This tool, he said, can help scientists better understand the quantum mechanics underlying bigger and more complex molecules.

The new method, described in The Journal of Chemical Physics, from AIP Publishing, combines two technologies. The first is a camera developed at Oxford University, called the Pixel-Imaging Mass Spectrometry (PImMS) camera. The second is a femtosecond vacuum ultraviolet light source built at the NRC femtolabs in Ottawa.

Mass spectrometry is a method used to identify unknown compounds and to probe the structure of molecules. In most types of mass spectrometry, a molecule is fragmented into atoms and smaller molecules that are then separated by molecular weight. In time-of-flight mass spectrometry, for example, an electric field accelerates the fragmented molecule. The speed of those fragments depends on their mass and charge, so to weigh them, you measure how long it takes for them to hit the detector.

Most conventional imaging detectors, however, can't discern exactly when one particular particle hits. To measure timing, researchers must use methods that effectively act as shutters, which let particles through over a short time period. Knowing when the shutter is open gives the time-of-flight information. But this method can only measure particles of the same mass, corresponding to the short time the shutter is open.

The PImMS camera, on the other hand, can measure particles of multiple masses all at once. Each pixel of the camera's detector can time when a particle strikes it. That timing information produces a three-dimensional map of the particles' velocities, providing a detailed 3-D image of the fragmentation pattern of the molecule.

To probe molecules, the researchers used this camera with a femtosecond vacuum ultraviolet laser. A laser pulse excites the molecule into a higher-energy state, and just as the molecule starts its quantum mechanical evolution -- after a few dozen femtoseconds --another pulse is fired. The molecule absorbs a single photon, a process that causes it to fall apart. The PImMS camera then snaps a 3-D picture of the molecular debris.

By firing a laser pulse at later and later times at excited molecules, the researchers can use the PImMS camera to take snapshots of molecules at various stages while they fall into lower energy states. The result is a series of 3-D blow-by-blow images of a molecule changing states.

The researchers tested their approach on a molecule called C2F3I. Although a relatively small molecule, it fragmented into five different products in their experiments. The data and analysis software is available online as part of an open science initiative, and although the results are preliminary, Hockett said, the experiments demonstrate the power of this technique.

"It's effectively an enabling technology to actually do these types of experiments at all," Hockett said. It only takes a few hours to collect the kind of data that would take a few days using conventional methods, allowing for experiments with larger molecules that were previously impossible.

Then researchers can better answer questions like: How does quantum mechanics work in larger, more complex systems? How do excited molecules behave and how do they evolve?

"People have been trying to understand these things since the 1920s," Hockett said. "It's still a very open field of investigation, research, and debate because molecules are really complicated. We have to keep trying to understand them."
The article, "Time-resolved multi-mass ion imaging: femtosecond UV-VUV pump-probe spectroscopy with the PImMS camera," is authored by Ruaridh Forbes, Varun Suresh Makhija, Kevin Veyrinas, Albert Stolow, Jason Lee, Michael B. Burt, Mark Brouard, Claire Vallance, Iain Wilkinson, Rune Lausten and Paul Hockett. The article will appear in The Journal of Chemical Physics April 4, 2017 (DOI: 10.1063/1.4978923). After that date, it can be accessed at


The Journal of Chemical Physics publishes concise and definitive reports of significant research in the methods and applications of chemical physics. See

American Institute of Physics

Related Mass Spectrometry Articles:

Study shows that a high protein intake in early childhood is associated with higher body fat mass but not higher lean mass
New research presented at this year's European Congress on Obesity (ECO) in Porto, Portugal, May 17-20, shows that a high intake of protein in early childhood, particularly from animal food sources, is associated with a higher body mass index (BMI) due to increased body fat and not increases in fat-free mass.
Triboelectric nanogenerators boost mass spectrometry performance
Triboelectric nanogenerators (TENG) convert mechanical energy harvested from the environment to electricity for powering small devices such as sensors or for recharging consumer electronics.
'Corrective glass' for mass spectrometry imaging
Researchers at the Max Planck Institute for Chemical Ecology in Jena, Germany, have now improved mass spectrometry imaging in such a way that the distribution of molecules can also be visualized on rippled, hairy, bulgy or coarse surfaces.
How to decrease the mass of aircrafts
Members of the Department of Chemistry of Lomonosov Moscow State University have created unique polymer matrices for polymer composites based on novel phthalonitrile monomers.
Mass insect migrations in UK skies
For the first time, scientists have measured the movements of high-flying insects in the skies over southern England -- and found that about 3.5 trillion migrate over the region every year.
Immunotherapy for cancer: New method identifies target antigens by mass spectrometry
New cancer therapies harness the immune system to fight tumors.
Rapid and mass production of graphene, using microwaves
An international team of researchers, affiliated with UNIST has discovered a simple new method for producing large quantities of the promising nanomaterial graphene.
New method helps identify antibiotics in mass spectrometry datasets
An international team of computer scientists has for the first time developed a method to find antibiotics hidden in huge but still unexplored mass spectrometry datasets.
A fundamental theory of mass generation
A team of four theoretical physicists, Francesco Sannino from Cp3-Origins at the University of Southern Denmark, Alessandro Strumia from CERN theory division and Pisa Univ., Andrea Tesi from the Enrico Fermi Institute at the University of Chicago in US, and Elena Vigiani from Pisa University have recently published in the Journal of High Energy Physics their work
Quantum leap in the reliability of mass spectrometry-based proteomics
Modern mass spectrometry systems enable scientists to routinely determine the quantitative composition of cells or tissue samples.

Related Mass Spectrometry Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Moving Forward
When the life you've built slips out of your grasp, you're often told it's best to move on. But is that true? Instead of forgetting the past, TED speakers describe how we can move forward with it. Guests include writers Nora McInerny and Suleika Jaouad, and human rights advocate Lindy Lou Isonhood.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...