Nav: Home

The inner lives of molecules

April 04, 2017

WASHINGTON, D.C., April 4, 2017 -- Quantum mechanics rules. It dictates how particles and forces interact, and thus how atoms and molecules work -- for example, what happens when a molecule goes from a higher-energy state to a lower-energy one. But beyond the simplest molecules, the details become very complex.

"Quantum mechanics describes how all this stuff works," said Paul Hockett of the National Research Council of Canada. "But as soon as you go beyond the two-body problem, you can't solve the equations." So, physicists must rely on computer simulations and experiments.

Now, he and an international team of researchers from Canada, the U.K. and Germany have developed a new experimental technique to take 3-D images of molecules in action. This tool, he said, can help scientists better understand the quantum mechanics underlying bigger and more complex molecules.

The new method, described in The Journal of Chemical Physics, from AIP Publishing, combines two technologies. The first is a camera developed at Oxford University, called the Pixel-Imaging Mass Spectrometry (PImMS) camera. The second is a femtosecond vacuum ultraviolet light source built at the NRC femtolabs in Ottawa.

Mass spectrometry is a method used to identify unknown compounds and to probe the structure of molecules. In most types of mass spectrometry, a molecule is fragmented into atoms and smaller molecules that are then separated by molecular weight. In time-of-flight mass spectrometry, for example, an electric field accelerates the fragmented molecule. The speed of those fragments depends on their mass and charge, so to weigh them, you measure how long it takes for them to hit the detector.

Most conventional imaging detectors, however, can't discern exactly when one particular particle hits. To measure timing, researchers must use methods that effectively act as shutters, which let particles through over a short time period. Knowing when the shutter is open gives the time-of-flight information. But this method can only measure particles of the same mass, corresponding to the short time the shutter is open.

The PImMS camera, on the other hand, can measure particles of multiple masses all at once. Each pixel of the camera's detector can time when a particle strikes it. That timing information produces a three-dimensional map of the particles' velocities, providing a detailed 3-D image of the fragmentation pattern of the molecule.

To probe molecules, the researchers used this camera with a femtosecond vacuum ultraviolet laser. A laser pulse excites the molecule into a higher-energy state, and just as the molecule starts its quantum mechanical evolution -- after a few dozen femtoseconds --another pulse is fired. The molecule absorbs a single photon, a process that causes it to fall apart. The PImMS camera then snaps a 3-D picture of the molecular debris.

By firing a laser pulse at later and later times at excited molecules, the researchers can use the PImMS camera to take snapshots of molecules at various stages while they fall into lower energy states. The result is a series of 3-D blow-by-blow images of a molecule changing states.

The researchers tested their approach on a molecule called C2F3I. Although a relatively small molecule, it fragmented into five different products in their experiments. The data and analysis software is available online as part of an open science initiative, and although the results are preliminary, Hockett said, the experiments demonstrate the power of this technique.

"It's effectively an enabling technology to actually do these types of experiments at all," Hockett said. It only takes a few hours to collect the kind of data that would take a few days using conventional methods, allowing for experiments with larger molecules that were previously impossible.

Then researchers can better answer questions like: How does quantum mechanics work in larger, more complex systems? How do excited molecules behave and how do they evolve?

"People have been trying to understand these things since the 1920s," Hockett said. "It's still a very open field of investigation, research, and debate because molecules are really complicated. We have to keep trying to understand them."
-end-
The article, "Time-resolved multi-mass ion imaging: femtosecond UV-VUV pump-probe spectroscopy with the PImMS camera," is authored by Ruaridh Forbes, Varun Suresh Makhija, Kevin Veyrinas, Albert Stolow, Jason Lee, Michael B. Burt, Mark Brouard, Claire Vallance, Iain Wilkinson, Rune Lausten and Paul Hockett. The article will appear in The Journal of Chemical Physics April 4, 2017 (DOI: 10.1063/1.4978923). After that date, it can be accessed at http://aip.scitation.org/doi/full/10.1063/1.4978923.

ABOUT THE JOURNAL

The Journal of Chemical Physics publishes concise and definitive reports of significant research in the methods and applications of chemical physics. See http://jcp.aip.org.

American Institute of Physics

Related Mass Spectrometry Articles:

Who is left behind in Mass Drug Administration?
Ensuring equity in the prevention of neglected tropical diseases (NTDs) is critical to reach NTD elimination goals as well as to inform Universal Health Coverage (UHC).
A mechanism capable of preserving muscle mass
By studying the young and aging muscles in mice, researchers from the Myology Research Center (Sorbonne Universite-Inserm) of the Institute of Myology identified a protein, CaVbeta1E that activates the factor GDF5.
Eyeballing a black hole's mass
There are no scales for weighing black holes. Yet astrophysicists from the Moscow Institute of Physics and Technology have devised a new way for indirectly measuring the mass of a black hole, while also confirming its existence.
Changes in gun purchases after mass shootings
For this analysis, researchers examined monthly data on US background checks for gun purchases and permits from November 1998 through April 2016, and they looked for purchasing trends after mass shootings during that time.
Study links perimenopause to accelerated fat mass gains, lean mass losses
A UCLA-led study confirms what women approaching menopause have long suspected: menopause does make fat go up.
Neural networks predict planet mass
To find out how planets form astrophysicists run complicated and time consuming computer calculations.
Paleontology: Diversification after mass extinction
A team led by Ludwig-Maximilians-Universitaet in Munich paleontologist Adriana López-Arbarello has identified three hitherto unknown fossil fish species in the Swiss Alps, which provide new insights into the diversification of the genus Eosemionotus.
Mass spectrometry sheds new light on thallium poisoning cold case
In 1994, Chinese university student Zhu Ling began experiencing stomach pain, hair loss and partial paralysis.
Mass shootings trigger blood donations
The report, appearing this week in the Journal of Trauma and Acute Care Surgery, is focused on blood transfusion needs and the influence of media coverage on blood bank operations.
Inexpensive chip-based device may transform spectrometry
An advance by MIT researchers could make it possible to produce tiny spectrometers that are just as accurate and powerful as their benchtop counterparts but could be mass produced using standard chip-making processes.
More Mass Spectrometry News and Mass Spectrometry Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Accessing Better Health
Essential health care is a right, not a privilege ... or is it? This hour, TED speakers explore how we can give everyone access to a healthier way of life, despite who you are or where you live. Guests include physician Raj Panjabi, former NYC health commissioner Mary Bassett, researcher Michael Hendryx, and neuroscientist Rachel Wurzman.
Now Playing: Science for the People

#544 Prosperity Without Growth
The societies we live in are organised around growth, objects, and driving forward a constantly expanding economy as benchmarks of success and prosperity. But this growing consumption at all costs is at odds with our understanding of what our planet can support. How do we lower the environmental impact of economic activity? How do we redefine success and prosperity separate from GDP, which politicians and governments have focused on for decades? We speak with ecological economist Tim Jackson, Professor of Sustainable Development at the University of Surrey, Director of the Centre for the Understanding of Sustainable Propserity, and author of...
Now Playing: Radiolab

An Announcement from Radiolab