Nav: Home

Predicting the limits of friction: Sandia looks at properties of material

April 04, 2017

ALBUQUERQUE, N.M. -- Normally, bare metal sliding against bare metal is not a good thing. Friction will destroy pistons in an engine, for example, without lubrication.

Sometimes, however, functions require metal on metal contact, such as in headphone jacks or electrical systems in wind turbines. Still, friction causes wear and wear destroys performance, and it's been difficult to predict when that will happen.

Until now.

Sandia National Laboratories materials scientists Nicolas Argibay and Michael Chandross and colleagues developed a model to predict the limits of friction behavior of metals based on materials properties -- how hard you can push on materials or how much current you can put through them before they stop working properly. They've presented their results at invited talks, most recently the 2016 Gordon Research Conference on Tribology, and in peer-reviewed papers, including a recent Journal of Materials Science article.

Their model could change the world of electrical contacts, affecting industries from electric vehicles to wind turbines. Understanding the fundamental causes of failure in metal contacts allows engineers to step in and fix the problem, and potentially lights up more paths toward new materials designs.

Linking science to engineering applications

"It's a tool to do design and it's a tool to do science," Argibay said. "It's really that link between fundamental science and engineering applications."

The discovery of how to predict the friction behavior of metals began as a study of specific materials for projects.

"It's a moment where you go from just having to say, 'The materials behavior will be this because we measured it in those conditions' to saying, 'I can tell you what conditions you can run in and get the behavior you want,'" Argibay said. "In fact, we provide guidelines for developing new materials."

Designers choose materials based on engineering rules of thumb under certain operating conditions, using the conventional wisdom that harder materials create less friction.

But Sandia's research demonstrates the stability of the microstructure governs the friction behavior engineers care about, and that changes how engineers can think about design when they characterize and select materials, the researchers said.

The team studied pure metals, such as gold and copper, to break down the friction problem by looking at the simplest systems. Once they understood the fundamental behavior of pure metals, it was easier to demonstrate that these ideas apply to more complex structures and more complex materials, they said.

Idea began with separate project

The idea developed in a convoluted fashion, starting several years ago when Chandross was asked for simulations to help improve hard gold coatings -- soft gold with a minor amount of another metal to make it harder. Gold is an efficient, corrosion-resistant conductor, but generally has high adhesion and friction -- and thus high wear.

That project produced a paper that excited Argibay, who told Chandross he could do experiments to prove the concepts the paper described.

"From those experiments, the whole thing exploded," Chandross said.

"We looked at the pure metals as a way to validate some of the hypotheses we had from Mike's analysis of more complex systems," Argibay explained. "If these ideas work in more complex systems, they ought to work in the most difficult scenario, the least likely scenario conventionally, and they did."

Sandia's work has implications for the growing worlds of wind turbines and electric vehicles, where companies seek an edge over the competition. The demand for electric cars and alternative ways of making electricity are likely to expand and in turn create demand for new technologies.

Argibay is helping design and develop a prototype rotary electrical contact for wind turbines that began as a Laboratory Directed Research and Development (LDRD) project.

"Basically we're bringing back technologies that were discarded because they didn't really understand the materials and couldn't make them work where and how they wanted to," he said.

New projects are ongoing

The project is exploring copper against a copper alloy for a high-performance, efficient electrical contact. That could allow the wind turbine industry to explore designs that weren't possible before.

In addition, the electrical contacts industry, which now uses alternating current in devices, might finally be able to turn to direct current devices as higher performance alternatives. As a possible interim step, Sandia researchers are exploring metallic electrical contacts as a drop-in for some applications, avoiding major changes in how the devices work.

If they demonstrate the theory is sound, then engineers can change how they think about the fundamentals of design in some of these devices, they said.

Follow-up funding allowed the team to study the variable of temperature, and now Chandross has begun an LDRD project to look at metals with other structures. Previous work has been done with face-centered cubic structured metals. Chandross' project seeks to understand friction in body-centered cubic metals, BCC metals, most commonly used for structural purposes. Researchers are looking at iron and tantalum.

Conventional wisdom holds that BCC metals won't produce low friction. "This is one of those instances where understanding the molecular scale or atomic scale mechanisms caused us to say, 'Yes, but they're bad only if you're not in the right conditions.' What happens when you are in the right conditions?" Chandross said.

BCC metals could open up more design and engineering possibilities for wind power generation and electric vehicles, improving efficiency and ultimately reducing maintenance and manufacturing costs.
-end-
Sandia National Laboratories is a multimission laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Department of Energy's National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies and economic competitiveness.

Sandia news media contact: Sue Holmes, sholmes@sandia.gov, (505) 844-6362

DOE/Sandia National Laboratories

Related Behavior Articles:

Religious devotion as predictor of behavior
'Religious Devotion and Extrinsic Religiosity Affect In-group Altruism and Out-group Hostility Oppositely in Rural Jamaica,' suggests that a sincere belief in God -- religious devotion -- is unrelated to feelings of prejudice.
Brain stimulation influences honest behavior
Researchers at the University of Zurich have identified the brain mechanism that governs decisions between honesty and self-interest.
Brain pattern flexibility and behavior
The scientists analyzed an extensive data set of brain region connectivity from the NIH-funded Human Connectome Project (HCP) which is mapping neural connections in the brain and makes its data publicly available.
Butterflies: Agonistic display or courtship behavior?
A study shows that contests of butterflies occur only as erroneous courtships between sexually active males that are unable to distinguish the sex of the other butterflies.
Sedentary behavior associated with diabetic retinopathy
In a study published online by JAMA Ophthalmology, Paul D.
Curiosity has the power to change behavior for the better
Curiosity could be an effective tool to entice people into making smarter and sometimes healthier decisions, according to research presented at the annual convention of the American Psychological Association.
Campgrounds alter jay behavior
Anyone who's gone camping has seen birds foraging for picnic crumbs, and according to new research in The Condor: Ornithological Applications, the availability of food in campgrounds significantly alters jays' behavior and may even change how they interact with other bird species.
A new tool for forecasting the behavior of the microbiome
A team of investigators from Brigham and Women's Hospital and the University of Massachusetts have developed a suite of computer algorithms that can accurately predict the behavior of the microbiome -- the vast collection of microbes living on and inside the human body.
Is risk-taking behavior contagious?
Why do we sometimes decide to take risks and other times choose to play it safe?
Neural connectivity dictates altruistic behavior
A new study suggests that the specific alignment of neural networks in the brain dictates whether a person's altruism was motivated by selfish or altruistic behavior.

Related Behavior Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Setbacks
Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".