Nav: Home

Enhanced therapeutic vaccine platform achieves 2 proof-of-concepts in veterinary medical use

April 04, 2018

Scientists from the Universities of Bern, Zurich and Oxford as well as the Latvian Biomedical Research & Study Centre led by Prof. Martin F. Bachmann (University Clinic of Rheumatology, Immunoloy and Allergology, University of Bern) have developed a new therapeutic vaccine technology based upon enhanced virus like nanoparticle conjugates. These vaccines are being developed by joint efforts of academic labs, UZH spin-off companies (EVAX AG and HypoPet AG), a privately held Biotech company Saiba GmbH and innovative British animal health company Benchmark Holdings PLC.

Prof. Martin F. Bachmann has been working for many years on the development of therapeutic vaccines with notable successes that include a vaccine against hypertension (Lancet. 2008 Mar 8;371(9615):821-7) and CAD106, a vaccine against Alzheimer`s disease that is now in registration studies with Novartis. The new enhanced vaccine platform has been engineered to incorporate a universal T-cell epitope for adaptive immune activation, a stimulator of innate immunity, and repetitive antigen presentation in a nanoparticle. Thus the vaccine platform is optimized for elderly and immuno-compromised individuals leading to induction of strong immunity and a high responder rate. This cutting-edge technology enables the latest advances in biologic medicines to be translated for use in companion animals at affordable prices - an option that will likely change the way we will medically treat our furry partners.

The clinical potential of these vaccine candidates for use in veterinary medicine is now highlighted by two articles published back to back on the 4th of April 2018 in The Journal of Allergy and Clinical Immunology (JACI), the most-cited journal in the field of allergy and clinical immunology. The team of scientists developed breakthrough therapies for insect-bite hypersensitivity in horses and atopic dermatitis in dogs by displaying either equine IL-5 or canine IL-31 on the immunologically optimized virus-like particles (NPJ Vaccines. 2017 Oct 23;2:30.). Thus, the researchers were able to generate vaccines that induced clinically effective levels of neutralizing target specific anti-cytokine antibodies, which resulted in dramatically improved disease symptoms in immunized animals. This has previously only been achieved by passive immunization with high amounts of monoclonal antibodies.

These vaccines are now being developed as first-in-class break-though-medicines for treating chronic allergic diseases in the respective target species.

Vaccine against Insect-Bite Hypersensitivity (IBH) in Horses

Allergic skin reactions caused by insect bites are the most common type of allergies in horses. One important form of such a skin allergy is called sweet itch, summer eczema or insect-bite hypersensitivity (IBH), and manifests in weeping and bleeding lesions including crust formation, scales, swelling and lichenification of the skin.

Thirty-four sweet itch affected Icelandic horses participated in a placebo-controlled double blinded clinical study performed by Fettelschoss-Gabriel et al., whereof 19 horses received vaccine and 15 horses received placebo. The vaccine consisted of two components coupled together. The first component is a general immune activation part based on the above mentioned enhanced virus like nanoparticle, the second component is IL-5, a self-molecule. IL-5 is a cytokine and the master-regulator of eosinophil development and activation, a major effector cell type in allergy. Immunization with this conjugate vaccine was well tolerated and resulted in IL-5 specific auto-antibodies which neutralized its target. This limited the number of eosinophils localized to the skin and thereby reducing tissue damage. This resulted in strongly reduced skin lesion scores in vaccinated compared to the previous season as well as placebo.

Unlike done in classical desensitisation, where one tries to make the immune system tolerant to the allergens, Fettelschoss-Gabriel et al. targeted the key effector cell in insect bite hypersensitivity, the eosinophil. This cell type also plays a key role in allergic human asthma and moncolonal antibodies against IL-5 have recently become an important new weapon for the treatment of the human disease. The new insights gained in horses may help to develop a similar new medicine in humans.

Vaccine against Atopic Dermatitis in Dogs

Atopic dermatitis (AD) is the most common allergic skin disease in dogs. Extensive itching causes scratching which results in loss of fur and secondary infections of the skin, accelerating the symptoms. AD not only affects the well being of dogs but also impacts the quality of life of their owners. IL-31 is a key cytokine driving itching, and a monoclonal antibody against IL-31 has been licensed for use in dogs for the treatment of AD. The teams of Prof. Martin Bachmann and Prof. Claude Favrot describe the development of a virus-like particle based vaccine against canine IL-31, and demonstrate that immunized dogs mount a robust IgG response which essentially abrogates symptoms of itching in house-dust mite sensitized and challenged dogs. Hence, Bachmann et al. present a breakthrough therapy of vaccination against IL-31, which is not only a promising mode to treat AD in dogs but may also facilitate development of a similar vaccine in humans.
-end-


University of Zurich

Related Vaccines Articles:

Misinformation on vaccines readily available online
Parents researching childhood vaccinations online are likely to encounter significant levels of negative information, researchers at the University of Otago, Wellington, have found.
Battle with the cancer: New avenues from childhood vaccines
A new research from the University of Helsinki showed for the first time how the pre-immunization acquired through common childhood vaccines can be used to enhance therapeutic cancer treatment.
Personalized cancer vaccines
The only therapeutic cancer vaccine available on the market has so far showed very limited efficacy in clinical trials.
Doubts raised about effectiveness of HPV vaccines
A new analysis of the clinical trials of HPV vaccines to prevent cervical cancer raises doubts about the vaccines' effectiveness.
Egg-based flu vaccines: Not all they're cracked up to be?
Flu season is underway in the Northern Hemisphere, sickening millions of people and in rare cases, causing hospitalization or death.
You're probably not allergic to vaccines
Five facts about allergies to vaccines, pulled together by two McMaster University physicians.
Micromotors deliver oral vaccines
Vaccines have saved millions of lives, but nobody likes getting a shot.
Vaccines not protecting farmed fish from disease
The vaccines used by commercial fish farmers are not protecting fish from disease, according to a new study.
Bioengineers imagine the future of vaccines and immunotherapy
In the not-too-distant future, nanoparticles delivered to a cancer patient's immune cells might teach the cells to destroy tumors.
Pneumonia: Treatment with vaccines instead of antibiotics
A properly functioning immune system is key to resolve bacterial pneumonia.
More Vaccines News and Vaccines Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 3: Shared Immunity
More than a million people have caught Covid-19, and tens of thousands have died. But thousands more have survived and recovered. A week or so ago (aka, what feels like ten years in corona time) producer Molly Webster learned that many of those survivors possess a kind of superpower: antibodies trained to fight the virus. Not only that, they might be able to pass this power on to the people who are sick with corona, and still in the fight. Today we have the story of an experimental treatment that's popping up all over the country: convalescent plasma transfusion, a century-old procedure that some say may become one of our best weapons against this devastating, new disease.   If you have recovered from Covid-19 and want to donate plasma, national and local donation registries are gearing up to collect blood.  To sign up with the American Red Cross, a national organization that works in local communities, head here.  To find out more about the The National COVID-19 Convalescent Plasma Project, which we spoke about in our episode, including information on clinical trials or plasma donation projects in your community, go here.  And if you are in the greater New York City area, and want to donate convalescent plasma, head over to the New York Blood Center to sign up. Or, register with specific NYC hospitals here.   If you are sick with Covid-19, and are interested in participating in a clinical trial, or are looking for a plasma donor match, check in with your local hospital, university, or blood center for more; you can also find more information on trials at The National COVID-19 Convalescent Plasma Project. And lastly, Tatiana Prowell's tweet that tipped us off is here. This episode was reported by Molly Webster and produced by Pat Walters. Special thanks to Drs. Evan Bloch and Tim Byun, as well as the Albert Einstein College of Medicine.  Support Radiolab today at Radiolab.org/donate.