Anemia: When cells fail to produce enough protein factories

April 04, 2018

Every day, stem cells in our bone marrow produce billions of new red blood cells. Any disruption in this process can result in serious disease. Researchers from Charité - Universitätsmedizin Berlin and Harvard Medical School have succeeded in furthering our understanding of how blood cells are formed. Their insights into the molecular foundations of this process may help break new ground in the treatment of certain types of anemia. The results of this study have been published in Cell*.

Thanks to extensive research we now have a good understanding of how blood cells develop, but several aspects of this process remain to be fully elucidated. For instance, we do not yet fully understand how overall levels of 'transcription factors' are regulated. These are special types of proteins which control the process by which blood-forming stem cells differentiate into different types of blood cells. Patients with Diamond-Blackfan anemia (DBA) - an inherited disorder which disrupts the development of red cells in affected patients, but which does not affect the development of other blood cell types - offer researchers a particularly useful model for the study of these proteins.

Working with the research group led by Prof. Vijay G. Sankaran of Boston Children's Hospital and the Broad Institute, Rajiv K. Khajuria, a doctoral student at Charité's Berlin-Brandenburg School for Regenerative Therapies, studied the molecular processes involved in the differentiation of stem cells and their development into mature blood cells. The researchers were able to show that a reduction in the number of ribosomes - organelles known as the 'protein factories' of the cell - is responsible for the disruption in the formation of red blood cells found in patients with DBA. The disorder is characterized by mutations affecting one of the protein building blocks of ribosomes. However, while this mutation is responsible for reducing overall levels of these protein factories, it does not affect their composition. The researchers were also able to show that the process of translating certain sections of genetic information into new proteins is impaired in these ribosomes. Changes affecting the GATA1 transcription factor, a key regulator of red blood cell formation, were evident even at the stem cell stage of development. The parcel of genetic information that is required for the transcription factor's synthesis, known as messenger RNA, shows specific structural differences. These differences may render it susceptible to the reduction in ribosome levels seen in DBA. The unique structure of the GATA1 messenger RNA may explain why the development from stem cell to blood cell is unaffected in all other types of blood cells.

This basic research study provides an answer to one of the key questions within the field of biology; namely, how the development of blood cell types is regulated after the original genetic information has been transcribed into messenger RNA. The study's findings show that total ribosome levels work in combination with certain structural elements of messenger RNA to determine the direction of a stem cell's development and differentiation. The resultant improved understanding of how Diamond-Blackfan anemia develops may also serve as a basis for the development of new treatments for patients affected by the disorder. "The research group is in the process of developing a treatment that specifically targets the GATA1 transcription factor", says Khajuria. As for the reasons behind this new endeavor, he explains: "This type of treatment would be suitable for all DBA patients, irrespective of the nature of the underlying mutation."
-end-
*Khajuria R.K., et al., Ribosome Levels Selectively Regulate Translation and Lineage Commitment in Human Hematopoiesis. Cell (2018), Volume 173, Issue 1, p90-103.e19, 22 March 2018

Contact:
Dr. Sabine Bartosch
Berlin-Brandenburg School for Regenerative Therapies
Charité - Universitätsmedizin Berlin
t: +49 30 450 539 418
Email: Coordination_office@bsrt.de

Links:
Berlin-Brandenburg School for Regenerative Therapies (BSRT)/
Publication in Cell

Charité - Universitätsmedizin Berlin

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.