Nav: Home

Tuning in to magnetic ink

April 04, 2018

Inkjet printing technology can be used to produce radio frequency devices, such as antennas, that can be magnetically reconfigured on demand. This discovery by a team from KAUST boosts prospects for inexpensive electronics that work worldwide by tuning in to multiple cellular bands and standards.

A typical cellphone antenna is made by depositing metallic patterns onto insulating silicon or glass wafers. These miniature aerials have excellent reliability, but only operate at fixed frequency bands. To fabricate devices that can adapt to different wireless settings, researchers are increasingly turning to magnets. Replacing an insulating wafer with a magnetic one, for instance, can achieve frequency tuning that can cover mega- to gigahertz ranges.

Instead of the complex, multilayered ceramics currently used as magnetic substrates, Mohammad Vaseem, Atif Shamim and colleagues investigated an approach based on printable electronics--a technology that replaces the dye-filled fluids found in consumer printers with special inks containing substances, such as metallic nanoparticles, and then custom-prints device patterns with relative ease and high speeds.

"If magnetic substrates can be printed, we can achieve huge cost savings and add new functionalities," says Shamim. "There are a number of other metrics that can be optimized, such as thickness, that are impossible with fixed substrates."

By injecting iron-based reagents into a hot acetic acid solution, the researchers synthesized magnetic iron-oxide nanoparticles that dispersed into deionized water to form an ink. Subsequent printing tests showed immediate promise: when deposited as a thin film on a glass substrate, the new magnetic substrate could act as an energy-storing inductor device with an adjustable capacity of over 20 percent.

Printing the magnetic ink thicker than a few nanometers, however, proved impossible due to its natural brittleness. To strengthen the ink, the team modified the nanoparticles' surfaces with hydrocarbon chains to help the tiny magnets mix evenly into an epoxy resin known as SU-8. The resulting paste was screen-printed and UV-cured into free-standing magnetic sheets of a few millimeters in thickness.

The innovative, fully printed magnetic wafer displayed promising antenna tuning of over 10 percent--a figure the team aims to improve by perfecting their printing recipes.

"The surprise was that we got antennas with a good tuning range, even though we mixed in 50 percent SU-8," notes Shamim. "This means we could extend this tuning range further by adjusting this ratio and also move to more sophisticated roll to roll processes that print at meters per minute."
-end-


King Abdullah University of Science & Technology (KAUST)

Related Nanoparticles Articles:

Study models new method to accelerate nanoparticles
In a new study, researchers at the University of Illinois and the Missouri University of Science and Technology modeled a method to manipulate nanoparticles as an alternative mode of propulsion for tiny spacecraft that require very small levels of thrust.
Actively swimming gold nanoparticles
Bacteria can actively move towards a nutrient source -- a phenomenon known as chemotaxis -- and they can move collectively in a process known as swarming.
Nanoparticles take a fantastic, magnetic voyage
MIT engineers have designed tiny robots that can help drug-delivery nanoparticles push their way out of the bloodstream and into a tumor or another disease site.
Quantum optical cooling of nanoparticles
One important requirement to see quantum effects is to remove all thermal energy from the particle motion, i.e. to cool it as close as possible to absolute zero temperature.
Nanoparticles help realize 'spintronic' devices
For the first time researchers have demonstrated a new way to perform functions essential to future computation three orders of magnitude faster than current commercial devices.
More Nanoparticles News and Nanoparticles Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...