Ancient origins of viruses discovered

April 04, 2018

Research published today in Nature has found that many of the viruses infecting us today have ancient evolutionary histories that date back to the first vertebrates and perhaps the first animals in existence.

The study, a collaboration between the University of Sydney, the China Center for Disease Control and Prevention and the Shanghai Public Health Clinical Centre, looked for RNA viruses in 186 vertebrate species previously ignored when it came to viral infections.

The researchers discovered 214 novel RNA viruses (where the genomic material is RNA rather than DNA) in apparently healthy reptiles, amphibians, lungfish, ray-finned fish, cartilaginous fish and jawless fish.

"This study reveals some groups of virus have been in existence for the entire evolutionary history of the vertebrates - it transforms our understanding of virus evolution," said Professor Eddie Holmes, of the Marie Bashir Institute for Infectious Diseases & Biosecurity at the University of Sydney.

"For the first time we can definitely show that RNA viruses are many millions of years old, and have been in existence since the first vertebrates existed.

"Fish, in particular, carry an amazing diversity of viruses, and virtually every type of virus family detected in mammals is now found in fish. We even found relatives of both Ebola and influenza viruses in fish."

However, Professor Holmes was also quick to emphasise that these fish viruses do not pose a risk to human health and should be viewed as a natural part of virus biodiversity.

"This study emphasises just how big the universe of viruses - the virosphere - really is. Viruses are everywhere.

"It is clear that there are still many millions more viruses still to be discovered," he said.

The newly discovered viruses appeared in every family or genus of RNA virus associated with vertebrate infection, including those containing human pathogens such as influenza virus.

Because the evolutionary histories of the viruses generally matched those of their vertebrates, the researchers were able to conclude that these viruses had long evolutionary histories.
-end-


University of Sydney

Related RNA Articles from Brightsurf:

A new RNA catalyst from the lab
On the track of evolution: a catalytically active RNA molecule that specifically attaches methyl groups to other RNAs - a research group from the University of Würzburg reports on this new discovery in Nature.

Small RNA as a central player in infections
The most important pathogenicity factors of the gastric pathogen Helicobacter pylori are centrally regulated by a small RNA molecule, NikS.

RNA as a future cure for hereditary diseases
ETH Zurich scientists have developed an RNA molecule that can be used in bone marrow cells to correct genetic errors that affect protein production.

Bringing RNA into genomics
By studying RNA-binding proteins, a research consortium known as ENCODE (Encyclopedia of DNA Elements) has identified genomic sites that appear to code for RNA molecules that influence gene expression.

RNA key in helping stem cells know what to become
If every cell has the same genetic blueprint, why does an eye cell look and act so differently than a brain cell or skin cell?

RNA structures by the thousands
Researchers from Bochum and Münster have developed a new method to determine the structures of all RNA molecules in a bacterial cell at once.

New kind of CRISPR technology to target RNA, including RNA viruses like coronavirus
Researchers in the lab of Neville Sanjana, PhD, at the New York Genome Center and New York University have developed a new kind of CRISPR screen technology to target RNA.

Discovery of entirely new class of RNA caps in bacteria
The group of Dr. Hana Cahová of the Institute of Organic Chemistry and Biochemistry of the CAS, in collaboration with scientists from the Institute of Microbiology of the CAS, has discovered an entirely new class of dinucleoside polyphosphate 5'RNA caps in bacteria and described the function of alarmones and their mechanism of function.

New RNA mapping technique shows how RNA interacts with chromatin in the genome
A group led by scientists from the RIKEN Center for Integrative Medical Sciences (IMS) in Japan have developed a new method, RADICL-seq, which allows scientists to better understand how RNA interacts with the genome through chromatin--the structure in which the genome is organized.

Characterising RNA alterations in cancer
The largest and most comprehensive catalogue of cancer-specific RNA alterations reveals new insights into the cancer genome.

Read More: RNA News and RNA Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.