Nav: Home

Tokyo Tech scientists discover deep microbes' key contribution to Earth's carbon cycle

April 04, 2019

Hydrocarbons play key roles in atmospheric and biogeochemistry, the energy economy, and climate change. Most hydrocarbons form in anaerobic environments through high temperature or microbial decomposition of organic matter. Microorganisms can also "eat" hydrocarbons underground, preventing them from reaching the atmosphere. Using a new technique developed at the Earth-Life Science Institute (ELSI), an international team led by the Tokyo Institute of Technology professors Alexis Gilbert, Naohiro Yoshida and Yuichiro Ueno show that biological hydrocarbon degradation gives a unique biological signature. These findings could help detect subsurface biology and understand the carbon cycle and its impact on climate.

Humanity exploits Earth's vast reservoirs of hydrocarbons as one of its principle energy sources. The ways in which carbon is fixed and processed during the formation of these reservoirs have important consequences for resource exploration. In addition, the release of hydrocarbons from Earth's subsurface reservoirs can have important implications on Earth's climate, since light hydrocarbons such as methane are potent greenhouse gases. Scientists would like to understand the potentially important role Earth's enormous subsurface biosphere might play in deep hydrocarbon reservoir behaviour. To date, it has been difficult to estimate how much hydrocarbons have been affected by subsurface microorganisms.

Gilbert and coworkers overcame this difficulty by using a new method developed at ELSI that enables the measurement of position specific stable carbon isotope ratios. Hydrocarbons are mostly long chains of carbon atoms attached to hydrogen atoms, but carbon has two naturally abundant isotopes (types of carbon atom with different numbers of neutrons, and thus different masses, which can be measured), carbon-12 (12C) and carbon-13 (13C). Due to the ways organisms form the molecules that ultimately become environmental hydrocarbons, the ratio of 12C/13C for each specific carbon atom position in a hydrocarbon can be unique. The research here focused on propane, a natural gas hydrocarbon molecule containing three carbon atoms.

The researchers fed propane to microorganisms in the lab to measure the specific 12C/13C signature produced these organisms, and measured the non-biological changes that occurred when propane is broken down at high temperatures, a process known as "cracking." They then used these baseline measurements to interpret natural gas samples from the US, Canada and Australia, allowing them to detect the presence of microorganisms using propane as "food" in natural gas reservoirs, and to quantify the amount of hydrocarbons eaten by microorganisms. "When I started analyzing samples from the bacterial simulation experiments, they matched perfectly what we observed in the field, suggesting the presence of propane degrading bacteria in the natural gas reservoirs," Gilbert noted. Thus, this study revealed the presence of microorganisms that would have been difficult to detect using conventional methods, and opens a new window to understanding global hydrocarbon cycling.

"I was particularly interested in deciphering biological from non-biological processes related to organic molecules. This question has implication for the origin of life, for detection of life in the Universe, but also for our understanding of the biosphere and its evolution on Earth," says Gilbert. This study also has important implications with global climate change, as propane and other hydrocarbons are greenhouse gases and pollutants. Though the team did not attempt to quantify how much hydrocarbons are being "eaten" by microorganisms at the global scale, they believe their approach will allow such quantification in the near future, and suggest this will benefit models aiming to quantify global hydrocarbon cycling.

Finally, Gilbert adds, in the future this kind of approach may be useful for the detection of life on extraterrestrial bodies such as other planets or moons in our solar system. Though their current machine is too large to be sent to space, their techniques could be applied to samples brought back to Earth, or their instrument could be miniaturized.
-end-
Reference

Alexis Gilbert1,2, Barbara Sherwood Lollar3, Florin Musat4, Thomas Giunta3, Songcan Chen4, Yuki Kajimoto5, Keita Yamada4, Christopher J. Boreham6, Naohiro Yoshida1,5, and Yuichiro Ueno1,2, Intramolecular Isotopic Evidence for Bacterial Oxidation of Propane in Subsurface Natural Gas Reservoirs, Proceedings of the National Academy of Sciences, DOI: https://doi.org/10.1073/pnas.1817784116

  1. Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro, 152-8551 Tokyo, Japan.
  2. Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, 152-8550 Tokyo, Japan.
  3. Department of Earth Sciences, University of Toronto, Toronto, ON, Canada M5S 3B1.
  4. Helmholtz Centre for Environmental Research - UFZ, 04318 Leipzig, Germany.
  5. Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, Yokohama, 226-8503 Kanagawa, Japan.
  6. Geoscience Australia, Canberra, ACT 2601, Australia.


Tokyo Institute of Technology (Tokyo Tech)

Tokyo Tech stands at the forefront of research and higher education as the leading university for science and technology in Japan. Tokyo Tech researchers excel in fields ranging from materials science to biology, computer science, and physics. Founded in 1881, Tokyo Tech hosts over 10,000 undergraduate and graduate students per year, who develop into scientific leaders and some of the most sought-after engineers in industry. Embodying the Japanese philosophy of "monotsukuri," meaning "technical ingenuity and innovation," the Tokyo Tech community strives to contribute to society through high-impact research. http://www.titech.ac.jp/english/

The Earth-Life Science Institute (ELSI)

Launched in 2012, ELSI is one of Japan's ambitious World Premiere International research centres, whose aim is to achieve progress in broadly inter-disciplinary scientific areas by inspiring the world's greatest minds to come to Japan and collaborate on the most challenging scientific problems. ELSI's primary aim is to address the origin and co-evolution of the Earth and life.

WPI

The World Premier International Research Center Initiative (WPI) was launched in 2007 by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) to help build globally visible research centres in Japan. These institutes promote high research standards and outstanding research environments that attract frontline researchers from around the world. These centres are highly autonomous, allowing them to revolutionize conventional modes of research operation and administration in Japan.

Tokyo Institute of Technology

Related Climate Change Articles:

The black forest and climate change
Silver and Douglas firs could replace Norway spruce in the long run due to their greater resistance to droughts.
For some US counties, climate change will be particularly costly
A highly granular assessment of the impacts of climate change on the US economy suggests that each 1°Celsius increase in temperature will cost 1.2 percent of the country's gross domestic product, on average.
Climate change label leads to climate science acceptance
A new Cornell University study finds that labels matter when it comes to acceptance of climate science.
Was that climate change?
A new four-step 'framework' aims to test the contribution of climate change to record-setting extreme weather events.
It's more than just climate change
Accurately modeling climate change and interactive human factors -- including inequality, consumption, and population -- is essential for the effective science-based policies and measures needed to benefit and sustain current and future generations.
Climate change scientists should think more about sex
Climate change can have a different impact on male and female fish, shellfish and other marine animals, with widespread implications for the future of marine life and the production of seafood.
Climate change prompts Alaska fish to change breeding behavior
A new University of Washington study finds that one of Alaska's most abundant freshwater fish species is altering its breeding patterns in response to climate change, which could impact the ecology of northern lakes that already acutely feel the effects of a changing climate.
Uncertainties related to climate engineering limit its use in curbing climate change
Climate engineering refers to the systematic, large-scale modification of the environment using various climate intervention techniques.
Public holds polarized views about climate change and trust in climate scientists
There are gaping divisions in Americans' views across every dimension of the climate debate, including causes and cures for climate change and trust in climate scientists and their research, according to a new Pew Research Center survey.
The psychology behind climate change denial
In a new thesis in psychology, Kirsti Jylhä at Uppsala University has studied the psychology behind climate change denial.

Related Climate Change Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...