University of Manchester technology set to lead fight against anti-microbial resistance

April 04, 2019

Increasing pressures on health services have led to the over-prescription of commonly used antibiotics, more instances of mis-prescription and subsequently, the emergence of antibiotic resistance and an increased reliance on antibiotics of last resort. This novel technology is set to play a vital role in the fight against anti-microbial resistance.

Professor Douglas Kell has developed technology using flow cytometry which detects and counts individual bacteria in a urine sample, and can determine which antibiotic is the most efficient at killing those particular bacteria. The most effective antibiotic can then be prescribed to the patient.

Professor Kell believes the 'precise technology' could be deployed as a portable instrument in GP clinics and hospitals.

Professor Kell said: "What we've been able to do for the very first time is to provide a very rapid method that will enable us to determine whether a particular antibiotic is going to kill the organisms in the urinary tract infection or not. The method is sufficiently rapid that the results would be available in the time before an individual would leave a doctor's surgery.

"Typical modern methods have often relied on discovering the genotype of the organism that is there and the sequence of DNA. But that doesn't actually tell you whether or not the organism is susceptible, in the sense of stopping it growing, to the antibiotic in question."

Antimicrobial resistance or AMR - which occurs naturally over time and usually through genetic changes - is the ability of a microbe to resist the effects of medication that once could successfully treat the microbe. Microorganisms that develop antimicrobial resistance are sometimes referred to as superbugs. AMR is widely seen as one of the greatest threats to society.

Professor Kell added: "The common occurrence is that a patient will turn up at a GP clinic with a urinary tract infection or a suspected urinary tract infection, and the doctor would like to give an antibiotic.

"Quite often, one doesn't know which is the right antibiotic that will cure the infection.

"What would be desirable is to have a test that could tell you which antibiotic is going to work on a timescale of say thirty minutes or less so that the patient gets the right prescription before they leave the GP's clinic. This is what we have been able to achieve"
-end-


University of Manchester

Related Antibiotic Articles from Brightsurf:

Pollution linked to antibiotic resistance
Antibiotic resistance is an increasing health problem, but new research suggests it is not only caused by the overuse of antibiotics.

Antibiotic resistance and the need for personalized treatments
Scientists have discovered that the microbiota of each individual determines the maintenance of antibiotic resistant bacteria in the gut: whereas in some individuals resistant bacteria are quickly eliminated, in others they are not.

Artificial intelligence yields new antibiotic
Using a machine-learning algorithm, MIT researchers have identified a powerful new antibiotic compound.

From cancer medication to antibiotic
Antibiotic-resistant bacteria are increasingly the source of deadly infections. A team of scientists from the Technical University of Munich (TUM) and the Helmholtz Center for Infection Research (HZI) in Braunschweig have now modified an approved cancer drug to develop an active agent against multidrug-resistant pathogens.

Up to two-fifths of antibiotic prescriptions in the US could be inappropriate
As much as two fifths (43%) of antibiotic prescriptions in the United States could be inappropriate, warn researchers in a study published by The BMJ today.

New understanding of antibiotic synthesis
Researchers at McGill University's Faculty of Medicine have made important strides in understanding the functioning of enzymes that play an integral role in the production of antibiotics and other therapeutics.

Cause of antibiotic resistance identified
Bacteria can change form in human body, hiding the cell wall inside themselves to avoid detection.

Cannabidiol is a powerful new antibiotic
New research has found that Cannnabidiol is active against Gram-positive bacteria, including those responsible for many serious infections (such as Staphyloccocus aureus and Streptococcus pneumoniae), with potency similar to that of established antibiotics such as vancomycin or daptomycin.

New approaches cut inappropriate antibiotic use by over 30%
A UC Davis study of nine emergency departments and urgent care centers in California and Colorado found educating physicians and patients about safe antibiotic use can cut overuse by one-third.

How certain antibiotic combinations could defeat 'superbugs'
In hospitalized patients with bacterial infections, heteroresistance is more widespread than previously appreciated.

Read More: Antibiotic News and Antibiotic Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.