Nav: Home

Capturing mosquito waste could speed up virus detection

April 04, 2019

Annapolis, MD; April 4, 2019--Public health officials could soon be able to detect viruses in mosquitoes in the wild much more quickly and easily--thanks to the insect equivalent of a urine test.

In just the last few years, researchers have discovered that viruses such as dengue and West Nile can be detected in the excreta, or liquid waste droplets, of infected mosquitoes. Now, a new study in Australia shows that two kinds of commonly used mosquito traps can be readily modified to collect mosquito waste to be tested for signs of viruses. The results of the study and details of the trap modifications are published today in the Journal of Medical Entomology.

It's a proof of concept that puts this technique closer to use in regions around the world where mosquito-borne viruses are a public health threat. "These methods could readily be employed worldwide, as the trap modifications to collect mosquito excreta can be done relatively easily and cheaply," says Dagmar Meyer, Ph.D., postdoctoral research fellow at James Cook University in Cairns, Queensland, Australia, and lead author on the study.

Other methods for detecting mosquito-borne diseases in wild populations include collecting pools of mosquitoes to test directly for viruses or testing blood samples from animals, such as chickens or pigs, that are also bitten by mosquitoes and serve as "reservoir" hosts for viruses. Both of these come with challenges, such as labor-intensiveness and the need to maintain continuous cold storage of samples from collection through testing. In 2010, a method was developed to collect mosquito saliva, which could also be tested for signs of viruses, on "nucleic acid preservation cards," which preserve viral RNA at room temperature over lengthy periods of time; the cards were coated in honey to attract the mosquitoes to feed on them.

However, a virus must incubate in a mosquito before being detected in its saliva, a period that can be as long as 15 days, but a virus can be detected in a mosquito's waste liquid in as little as two or three days. Plus, while a typical mosquito expels less than 5 nanoliters of saliva while feeding, it produces about 1.5 microliters of waste liquid each time it excretes. That's about 300 times as much sample material to work with--presuming it can be collected in the field from wild-caught mosquitoes.

That's what Meyer and fellow researchers at James Cook University, the Queensland Department of Health, and the Northern Territory Department of Health sought to find out. They started with overnight mosquito traps and long-term deployed passive traps, which all attract mosquitoes by emanating carbon dioxide; the overnight traps also use a powered light for attraction. Traps for overnight deployment consisted of a modified trap container that was attached to the standard trap models. The container held a honey-coated feeding substance, and a polycarbonate sheet placed at the bottom of the container collected the mosquito waste droplets. The nucleic acid preservation cards then were used to wipe the polycarbonate sheet. Traps for long-term field deployment contained an external source of moisture, to keep mosquitoes alive for longer and thus excreting more, increasing the possibility of virus detection. The traps also housed honey-coated feeding substances, and nucleic acid preservation cards were placed directly in the traps to collect mosquito waste droplets.

The researchers then tested the collected mosquito waste for presence of West Nile virus, Murray Valley encephalitis virus, and Ross River virus, each of which were detected. "Our study, to our knowledge, is the first to have detected arboviruses from field-collected mosquito excreta," Meyer says. Meyer's collaborators on the study were Ana Ramirez and Scott Ritchie of James Cook University, Andrew van den Hurk of the Queensland Department of Health, and Nina Kurucz of the Northern Territory Department of Health.

The team of researchers say advances in molecular methods for detecting viral RNA in biological samples in recent years has made the testing of mosquito saliva and excreta for viruses feasible, and their success in the collection and detection in excreta opens the door for detecting mosquito-borne viruses in a way that is "simple, potentially more cost-effective, and allows for earlier and more sensitive detections" compared to other methods. They suggest future work can continue to optimize the trap modifications and compare the method's effectiveness with other existing methods.
"Development and field evaluation of a system to collect mosquito excreta for the detection of arboviruses," will be published online on April 4, 2019, in the Journal of Medical Entomology. Journalists may request advance copies of the article via the contact below or download the published paper after 10 a.m. U.S. Eastern time, April 4, 2019, at

CONTACT: Joe Rominiecki,, 301-731-4535 x3009

ABOUT: ESA is the largest organization in the world serving the professional and scientific needs of entomologists and people in related disciplines. Founded in 1889, ESA today has more than 7,000 members affiliated with educational institutions, health agencies, private industry, and government. Headquartered in Annapolis, Maryland, the Society stands ready as a non-partisan scientific and educational resource for all insect-related topics. For more information, visit

The Journal of Medical Entomology publishes research related to all aspects of medical entomology and medical acarology, including the systematics and biology of insects, acarines, and other arthropods of public health and veterinary significance. For more information, visit, or visit to view the full portfolio of ESA journals and publications.

Entomological Society of America

Related Mosquitoes Articles:

Mosquitoes are drawn to flowers as much as people -- and now scientists know why
Despite their reputation as blood-suckers, mosquitoes actually spent most of their time drinking nectar from flowers.
Mosquitoes engineered to repel dengue virus
An international team of scientists has synthetically engineered mosquitoes that halt the transmission of the dengue virus.
Engineered mosquitoes cannot be infected with or transmit any dengue virus
Genetically engineered mosquitoes are resistant to multiple types of dengue virus (DENV), according to a study published Jan.
Researchers identify that mosquitoes can sense toxins through their legs
Researchers at LSTM have identified a completely new mechanism by which mosquitoes that carry malaria are becoming resistant to insecticide.
Mated female mosquitoes are more likely to transmit malaria parasites
Female mosquitoes that have mated are more likely to transmit malaria parasites than virgin females, according to a study published Nov.
In Baltimore, lower income neighborhoods have bigger mosquitoes
Low-income urban neighborhoods not only have more mosquitoes, but they are larger-bodied, indicating that they could be more efficient at transmitting diseases.
Mosquitoes more likely to lay eggs in closely spaced habitats
Patches of standing water that are close together are more likely to be used by mosquitoes to lay eggs in than patches that are farther apart.
Why do mosquitoes choose us? Lindy McBride is on the case
Most of the 3,000+ mosquito species are opportunistic, but Princeton's Lindy McBride is most interested in the mosquitoes that scientists call 'disease vectors' -- carriers of diseases that plague humans -- some of which have evolved to bite humans almost exclusively.
Biting backfire: Some mosquitoes actually benefit from pesticide application
The common perception that pesticides reduce or eliminate target insect species may not always hold.
What makes mosquitoes avoid DEET? An answer in their legs
Many of us slather ourselves in DEET each summer in hopes of avoiding mosquito bites, and it generally works rather well.
More Mosquitoes News and Mosquitoes Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at