Nav: Home

And the blobs just keep on coming

April 04, 2019

When Simone Di Matteo first saw the patterns in his data, it seemed too good to be true. "It's too perfect!" Di Matteo, a space physics Ph.D. student at the University of L'Aquila in Italy, recalled thinking. "It can't be real." And it wasn't, he'd soon find out.

Di Matteo was looking for long trains of massive blobs -- like a lava lamp's otherworldly bubbles, but anywhere from 50 to 500 times the size of Earth -- in the solar wind. The solar wind, whose origins aren't yet fully understood, is the stream of charged particles that blows constantly from the Sun. Earth's magnetic field, called the magnetosphere, shields our planet from the brunt of its radiation. But when giant blobs of solar wind collide with the magnetosphere, they can trigger disturbances there that interfere with satellites and everyday communications signals.

In his search, Di Matteo was re-examining archival data from the two German-NASA Helios spacecraft, which launched in 1974 and 1976 to study the Sun. But this was 45-year-old data he'd never worked with before. The flawless, wave-like patterns he initially found hinted that something was leading him astray.

It wasn't until uncovering and removing those false patterns that Di Matteo found exactly what he was looking for: dotted trails of blobs that oozed from the Sun every 90 minutes or so. The scientists published their findings in JGR Space Physics on Feb. 21, 2019. They think the blobs could shed light on the solar wind's beginnings. Whatever process sends the solar wind out from the Sun must leave signatures on the blobs themselves.

Making Way for New Science

Di Matteo's research was the start of a project NASA scientists undertook in anticipation of the first data from NASA's Parker Solar Probe mission, which launched in 2018. Over the next seven years, Parker will fly through unexplored territory, soaring as close as 4 million miles from the Sun. Before Parker, the Helios 2 satellite held the record for the closest approach to the Sun at 27 million miles, and scientists thought it might give them an idea of what to expect. "When a mission like Parker is going to see things no one has seen before, just a hint of what could be observed is really helpful," Di Matteo said.

The problem with studying the solar wind from Earth is distance. In the time it takes the solar wind to race across the 93 million miles between us and the Sun, important clues to the wind's origins -- like temperature and density -- fade. "You're constantly asking yourself, 'How much of what I'm seeing here is because of evolution over four days in transit, and how much came straight from the Sun?'" said solar scientist Nicholeen Viall, who advised Di Matteo during his research at NASA's Goddard Space Flight Center in Greenbelt, Maryland. Helios data -- some of which was collected at just one-third the distance between the Sun and Earth -- could help them begin to answer these questions.

Modeling Blobs

The first step was tracing Helios' measurements of the blobs to their source on the Sun. "You can look at spacecraft data all you want, but if you can connect it back to where it came from on the Sun, it tells a more complete story," said Samantha Wallace, one of the study collaborators and a physics Ph.D. student at the University of New Mexico in Albuquerque.

Wallace used an advanced solar wind model to link magnetic maps of the solar surface to Helios' observations, a tricky task since computer languages and data conventions have changed greatly since Helios' days. Now, the researchers could see what sorts of regions on the Sun were likely to bud into blobs of solar wind.

Sifting the Evidence

Then, Di Matteo searched the data for specific wave patterns. They expected conditions to alternate -- hot and dense, then cold and tenuous -- as individual blobs engulfed the spacecraft and moved on, in a long line.

The picture-perfect patterns Di Matteo first found worried him. "That was a red flag," Viall said. "The actual solar wind doesn't have such precise, clean periodicities. Usually when you get such a precise frequency, it means some instrument effect is going on." Maybe there was some element of the instrument design they weren't considering, and it was imparting effects that had to be separated from true solar wind patterns.

Di Matteo needed more information on the Helios instruments. But most researchers who worked on the mission have long since retired. He did what anyone else would do, and turned to the internet.

Many Google searches and a weekend of online translators later, Di Matteo unearthed a German instruction manual that describes the instruments dedicated to the mission's solar wind experiment. Decades ago, when Helios was merely a blueprint and before anyone ever launched a spacecraft to the Sun, scientists didn't know how best to measure the solar wind. To prepare themselves for different scenarios, Di Matteo learned, they equipped the probes with two different instruments that would each measure certain solar wind properties in their own way. This was the culprit responsible for Di Matteo's perfect waves: the spacecraft itself, as it alternated between two instruments.

After they removed segments of data taken during routine instrument-switching, the researchers looked again for the blobs. This time, they found them. The team describes five instances that Helios happened to catch trains of blobs. While scientists have spotted these blobs from Earth before, this is the first time they've studied them this close to the Sun, and with this level of detail. They outline the first conclusive evidence that the blobs are hotter and denser than the typical solar wind.

The Return of the Blobs

Whether blob trains bubble in 90-minute intervals continuously or in spurts, and how much they vary between themselves, is still a mystery. "This is one of those studies that brought up more questions than we answered, but that's perfect for Parker Solar Probe," Viall said.

Parker Solar Probe aims to study the Sun up close, seeking answers to basic questions about the solar wind. "This is going to be very helpful," said Aleida Higginson, the mission's deputy project scientist at Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland. "If you want to even begin to understand things you've never seen before, you need to know what we've measured before and have a solid scientific interpretation for it."

Parker Solar Probe performs its second solar flyby on April 4, which brings it 15 million miles from the Sun -- already cutting Helios 2's record distance in half. The researchers are eager to see if blobs show up in Parker's observations. Eventually, the spacecraft will get so close it could catch blobs right after they've formed, fresh out of the Sun.
-end-


NASA/Goddard Space Flight Center

Related Solar Wind Articles:

Table top plasma gets wind of solar turbulence
Scientists from India and Portugal recreate solar turbulence on a table top using a high intensity ultrashort laser pulse to excite a hot, dense plasma and followed the evolution of the giant magnetic field generated by the plasma dynamics.
UNH researcher identifies key differences in solar wind models
The challenge of predicting space weather, which can cause issues with telecommunications and other satellite operations on Earth, requires a detailed understanding of the solar wind (a stream of charged particles released from the sun) and sophisticated computer simulations.
NASA's solar dynamics observatory captured trio of solar flares April 2-3
The sun emitted a trio of mid-level solar flares on April 2-3, 2017.
The economic case for wind and solar energy in Africa
To meet skyrocketing demand for electricity, African countries may have to triple their energy output by 2030.
Chemists create molecular 'leaf' that collects and stores solar power without solar panels
An international research team centered at Indiana University have engineered a molecule that uses light or electricity to convert the greenhouse gas carbon dioxide into carbon monoxide -- a carbon-neutral fuel source -- more efficiently than any other method of 'carbon reduction.' The discovery, reported today in the Journal of the American Chemical Society, is a new milestone in the quest to recycle carbon dioxide in the Earth's atmosphere into carbon-neutral fuels and others materials.
Wind and solar energy projects could bring 5,000 new jobs to rural Minnesota
While Minnesota's state energy policies have been a large driver in the shift from fossil fuels to renewables, the federal Production Tax Credit and Investment Tax Credit have played a major role in shaping the state's clean energy economy while keeping rates affordable for utility customers, according to a new report from the University of Minnesota Energy Transition Lab.
A better battery: One-time pollutant may become valued product to aid wind, solar energy
Chemists have discovered that one or more organic compounds in a family that traditionally has been known as pollutants could offer an important advance to make cheap, reliable batteries.
UNH researchers discover effect of rare solar wind on Earth's radiation belts
Researchers from the University of New Hampshire have captured unique measurements of the Van Allen radiation belts, which circle the Earth, during an extremely rare solar wind event.
NREL supercomputing model provides insights from higher wind and solar generation in the eastern power grid
A new study from the United States Department of Energy's National Renewable Energy Laboratory used high-performance computing capabilities and innovative visualization tools to model, in unprecedented detail, how the power grid of the eastern United States could operationally accommodate higher levels of wind and solar photovoltaic generation.
Food waste could store solar and wind energy
Saving up excess solar and wind energy for times when the sun is down or the air is still requires a storage device.

Related Solar Wind Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".