Nav: Home

How do muscle and tendon connections last a lifetime?

April 04, 2019

Muscles are connected to tendons to power animal movements such as running, swimming or flying. Forces are produced by contractile chains of the proteins actin and myosin, which are pulling on muscle-tendon connections called attachments. During animal development, these muscle-tendon attachments must be established such that they resist high mechanical forces for the entire life of the animal. An interdisciplinary team of researchers from Marseille (France), Munich and Münster (both Germany) has now been able to quantify the mechanical forces transmitted by a key attachment protein called Talin.

The researchers used the flight muscles of the fruit fly Drosophila for these molecular force measurements and found that a surprisingly small proportion of Talin molecules experiences detectable forces at developing muscle-tendon attachments. They also found that muscles deal with the increasing tissue forces by recruiting a high number of Talin molecules to attachments. This way, many Talin molecules can dynamically share the high peak forces produced during muscle contractions, for example while flying. "This mechanical adaptation concept ensures that muscle-tendon connections can last for life", says Sandra Lemke, a PhD student in biology at the Max Planck Institute of Biochemistry who carried out most of the experiments. The study was led by Dr. Frank Schnorrer from the Developmental Biology Institute at Aix-Marseille University and Prof. Dr. Carsten Grashoff at the University of Münster. These new results have been published in the journal PLOS Biology.

Background and method:

Integrin-based adhesions are important force sensing structures of animal cells to feel and resist mechanical forces. Integrin receptors are an important component of such structures sitting at the cell surface probing the environment outside the cell and binding to one end of Talin inside the cell. The other end of Talin binds to the contractile actin-myosin cytoskeleton, so Talin is in the perfect location to process molecular forces. The researchers therefore inserted a fluorescent force sensor into the protein talin in order to investigate molecular forces using microscopy methods.

Earlier studies by the research group headed by Carsten Grashoff at the Institute for Molecular Cell Biology at Münster University had already shown that 70 percent of all Talin molecules are exposed to high forces in so called focal adhesions, when cells are placed on hard plastic or glass substrates in the laboratory. Therefore, the results of this new study are very surprising: Less than 15 percent of the Talin molecules "felt" measurable forces at developing muscle attachments in an intact organism. It is important to know that a muscle connected to tendon cells is in a much softer environment as compared to cells in a hard plastic dish in the laboratory. Yet, developing muscles must anticipate high forces generated during muscle contractions in the future in the adult fly. To prepare for that, muscles recruit many Talin and Integrin molecules in their cell adhesions.

The scientists reduced the number of talin molecules present in the flight muscles of fruit flies using molecular genetic methods. The flies were still able to survive after the intervention, but their muscle-tendon connections ruptured during the first flight attempts, so the flies were no longer able to fly. These results demonstrate that connections between cells must dynamically adapt to the needs of each tissue to ensure lifelong function. In the future, it will be exciting to explore how mechanical signals achieve the recruitment of the correct number of molecules to the appropriate location in the cells.
-end-


University of Münster

Related Fruit Flies Articles:

New clues emerge about how fruit flies navigate their world
Janelia Research Campus scientists have uncovered new clues about how fruit flies keep track of where they are in the world.
Frisky female fruit flies become more aggressive towards each other after sex
Female fruit flies start headbutting each other after mating, becoming significantly more aggressive and intolerant Oxford University research has revealed.
What obese fruit flies may tell us about the evolution of cold tolerance
Researchers have hypothesized that migrations into higher, colder latitudes may lead to evolution of fast-burning metabolisms that keep cells warm in chilly conditions.
Fruit flies halt reproduction during infection
A protective mechanism that allows fruit flies to lay fewer eggs in response to bacterial infection is explained in a study published in the journal eLife.
Matching up fruit flies, mushroom toxins and human health
Some fruit flies build up tolerance to the toxin alpha-amanitin; the genetic mechanisms behind this adaptation link to an important metabolic pathway.
Enzyme key to learning in fruit flies
University of California, Riverside-led research finds enzyme that is key to learning in fruit flies.
When it comes to mating, fruit flies can make rational choices
In a paper published Jan. 17 in the journal Nature Communications, University of Washington researchers report that fruit flies -- perhaps the most widely studied insect in history -- show signs of rational decision-making when choosing a mate.
New study refutes how fruit flies developed their tolerance for alcohol
Scientists from the University of Chicago, the University of Nebraska-Lincoln and the University of Wisconsin-Madison conducted experiments investigating whether a molecular change in an enzyme gave the Drosophila melanogaster fruit fly species its superior ability to metabolize alcohol.
Scientists 'plug in' to circuitry behind sex in male fruit flies
Researchers from the University of Oxford have identified a small neural circuit in male fruit flies that has evolved to allow them to perform the complex mating ritual.
Fruit flies: Food, camera, action!
Fruit flies deprived of specific essential nutrients alter their food choices -- and even the way they search for food.

Related Fruit Flies Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...