Nav: Home

Researchers create molecules with strong anti-Zika virus potential

April 04, 2019

New York, April 4, 2019 - The Zika virus is widely known for causing microcephaly and other brain defects in the fetuses of pregnant, infected women. Currently, there are no approved antiviral therapies specifically designed to treat Zika, but researchers at the Advanced Science Research Center (ASRC) at The Graduate Center of The City University of New York, Hunter College, and their collaborators at Texas Tech University Health Sciences Center are on to a discovery that may lead to a much needed treatment. Led by the ASRC's Nanoscience Initiative, the scientists have developed a new class of molecules that show potent anti-Zika activity and low toxicity towards animal cells. Described in a paper published in the Journal of Medicinal Chemistry, these compounds could someday become the basis for a Zika-specific therapeutic.

"Our molecules are more potent than almost anything currently being used against Zika," said ASRC and Hunter College Chemistry Professor Adam Braunschweig, whose lab is conducting the work. "They are very potent, have low cell toxicity, and have the potential to be used for Zika treatment and detection."

All viruses and eukaryotic cells, which include plant and animal cells, have carbohydrates attached to their surfaces. The carbohydrates act like ID tags, helping cells recognize each other via carbohydrate receptors. This same method helps viruses gain entry into cells. In the new study, the researchers found a way to block this interaction.

The researchers created synthetic carbohydrate receptors, testing their anti-Zika activity in Vero cells and HeLa cells. In both cases, the molecules proved highly potent. The receptors likely fight the infection in one of two ways, says Braunschweig. They either bind to the carbohydrates on the cells' surfaces, or they bind those of the virus. Either way, the virus would be blocked from communicating with and entering the cells.

Synthetic carbohydrate receptors are not often useful because they are not very discriminating in what they choose to bind. In this study, however, the researchers created highly effective receptors by mimicking the binding approach of naturally occurring receptors. In addition to the potential for treating Zika, the strategy of using synthetic receptors also has anti-cancer, anti-parasite, and antibacterial potential.

A next step in the researchers' search for an effective Zika treatment will be to create a second generation of molecules by using the chemical intuition gained in this study to modify the structures and make them even more effective. Eventually, the team would like to test the molecules' therapeutic potential in animal trials.
-end-
Organizational Attribution

Our correct name is the Advanced Science Research Center at The Graduate Center of The City University of New York. For the purpose of space, Advanced Science Research Center, GC/CUNY is acceptable. On second reference, ASRC is correct.

About the Advanced Science Research Center

The ASRC at The Graduate Center elevates scientific research and education at CUNY and beyond through initiatives in five distinctive, but increasingly interconnected disciplines: environmental sciences, nanoscience, neuroscience, photonics, and structural biology. The ASRC promotes a collaborative, interdisciplinary research culture with renowned researchers from each of the initiatives working side-by-side in the ASRC's core facilities, sharing equipment that is among the most advanced available.

About The Graduate Center of The City University of New York

The Graduate Center of The City University of New York (CUNY) is a leader in public graduate education devoted to enhancing the public good through pioneering research, serious learning, and reasoned debate. The Graduate Center offers ambitious students more than 40 doctoral and master's programs of the highest caliber, taught by top faculty from throughout CUNY -- the nation's largest public urban university. Through its nearly 40 centers, institutes, and initiatives, including its Advanced Science Research Center (ASRC), The Graduate Center influences public policy and discourse and shapes innovation. The Graduate Center's extensive public programs make it a home for culture and conversation.

Advanced Science Research Center, GC/CUNY

Related Virus Articles:

Fighting the herpes virus
New insights into preventing herpes infections have been published in Nature Communications.
Strategies of a honey bee virus
Heidelberg, 23 October 2019 - The Israeli Acute Paralysis Virus is a pathogen that affects honey bees and has been linked to Colony Collapse Disorder, a key factor in decimating the bee population.
Tracking the HI virus
A European research team led by Prof. Christian Eggeling from the Friedrich Schiller University Jena, the Leibniz Institute of Photonic Technology (Leibniz IPHT), and the University of Oxford has now succeeded in using high-resolution imaging to make visible to the millisecond how the HI virus spreads between living cells and which molecules it requires for this purpose.
Prior Zika virus or dengue virus infection does not affect secondary infections in monkeys
Previous infection with either Zika virus or dengue virus has no apparent effect on the clinical course of subsequent infection with the other virus, according to a study published August 1 in the open-access journal PLOS Pathogens by David O'Connor of the University of Wisconsin-Madison, and colleagues.
Smartphone virus scanner is not what you think
The current leading method to assess the presence of viruses and other biological markers of disease is effective but large and expensive.
Early dengue virus infection could "defuse" zika virus
The Zika virus outbreak in Latin America has affected over 60 million people up to now.
Catch a virus by its tail
At a glance: Research uncovers key mechanism that allows some of the deadliest human RNA viruses to orchestrate the precise copying of the individual pieces of their viral genome and replicate.
Developing a vaccine against Nipah virus
Researchers developed a novel recombinant vaccine called NIPRAB that shows robust immunization against Nipah virus in animal models and may be effective against other viruses in the same family.
Dengue virus infection may cause severe outcomes following Zika virus infection during pregnancy
This study is the first to report a possible mechanism for the enhancement of Zika virus progression during pregnancy in an animal model.
Engineering a cancer-fighting virus
An engineered virus kills cancer cells more effectively than another virus currently used in treatments, according to Hokkaido University researchers.
More Virus News and Virus Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.