Nav: Home

Multiple mechanisms behind disease associated with unexpected heart attacks

April 04, 2019

TROY, N.Y. --Hypertrophic cardiomyopathy is best known for revealing itself in one certain way: as an unexpected, fatal heart attack during strenuous exercise. But researchers suspect as many as 300 mutations can individually cause enlargement of the heart that renders it vulnerable to strain. Recent studies examining three of those mutations at the molecular level found separate mechanisms at work, said Rensselaer Polytechnic Institute muscle protein and contraction expert Doug Swank, whose most recent paper on the topic was published today in the Journal of Physiology.

"Our work suggests that a simple one-size-fits-all hypothesis about how these mutations lead to an enlarged heart and to the disease is not likely to be the case. It's likely to be multiple mechanisms, perhaps depending on where the mutation is found in the protein or what it does to the protein," said Swank, a professor of biological sciences and member of the Rensselaer Center for Biotechnology and Interdisciplinary Studies.

Swank's research on hypertrophic cardiomyopathy is being conducted in collaboration with researchers at San Diego State University and Johns Hopkins University, with support from the National Institutes of Health.

The current paper and a previous study published in eLife in 2018 examine two mutations in myosin, a lever-shaped muscle protein that generates force to contract heart muscle tissue. Like all proteins, muscle proteins are chains of amino acids twisted into a three-dimensional shape that determines their function. But mutations slightly alter the composition of the amino acid chain, which also changes the shape of the protein and its performance.

Swanks' lab expresses the mutation in the wing muscle of a fruit fly, making it possible to examine how the mutations impact mechanical properties like force production, work and power. The eLife study looked at a mutation in myosin known as K146N (the mutation name is derived from the name of the affected amino acid residue and how it is altered in myosin). Examinations of fruit fly muscles with this mutation supported the "increased contractility hypothesis," which proposes that the heart is spending more time in a contracted state than in a relaxed state.

Ordinarily, as filaments of the myosin protein absorb energy, they bind to filaments of the protein actin and bend back upon themselves, pulling on the actin filaments and contracting the muscle.

"Our results for K146N indicated that the myosin bound longer to actin than it normally does," said Swank. "Considering that hundreds of these myosin molecules are doing this all the time, if they stay bound longer, at any given time you're going to have more myosin heads bound and pulling together than you otherwise would. So that gives you more force."

But the newly released Journal of Physiology study looked at an R249Q mutation and found a nearly opposite result. Fruit fly muscle with a R249Q mutation, which typically produces a less severe form of the disease, generated less force, less work, and less power. Swank said this result suggests that, in the heart, such a mutation is unlikely to be causing increased contractility - and yet it yields a similar outcome.

A third study to be published in the near future describes a mechanism for a mutation in another heart protein.

"Our hope is that, as we continue to understand how these mutations affect muscle contraction, a few general mechanisms will emerge which will make it possible to devise a group of treatments to address the disease," said Swank.
-end-
Swank, Rensselaer graduate student Kaylyn Bell, and undergraduate student Alice Huang were joined by San Diego State University researchers William A. Kronert and Sanford Bernstein on "The R249Q Hypertrophic Cardiomyopathy Mutation Decreases Contractility in Drosophila by Impeding Force Production," published in the Journal of Physiology.

About Rensselaer Polytechnic Institute

Founded in 1824, Rensselaer Polytechnic Institute is America's first technological research university. Rensselaer encompasses five schools, 32 research centers, more than 145 academic programs, and a dynamic community made up of more than 7,900 students and over 100,000 living alumni. Rensselaer faculty and alumni include more than 145 National Academy members, six members of the National Inventors Hall of Fame, six National Medal of Technology winners, five National Medal of Science winners, and a Nobel Prize winner in Physics. With nearly 200 years of experience advancing scientific and technological knowledge, Rensselaer remains focused on addressing global challenges with a spirit of ingenuity and collaboration. To learn more, please visit http://www.rpi.edu.

Rensselaer Polytechnic Institute

Related Protein Articles:

Protein aggregation: Protein assemblies relevant not only for neurodegenerative disease
Amyloid fibrils play a crucial role in neurodegenerative illnesses. Scientists from Heinrich Heine University Düsseldorf (HHU) and Forschungszentrum Jülich have now been able to use cryo-electron microscopy (cryo-EM) to decode the spatial structure of the fibrils that are formed from PI3K SH3 domains - an important model system for research.
Old protein, new tricks: UMD connects a protein to antibody immunity for the first time
How can a protein be a major contributor in the development of birth defects, and also hold the potential to provide symptom relief from autoimmune diseases like lupus?
Infection-fighting protein also senses protein misfolding in non-infected cells
Researchers at the University of Toronto have uncovered an immune mechanism by which host cells combat bacterial infection, and at the same time found that a protein crucial to that process can sense and respond to misfolded proteins in all mammalian cells.
Quorn protein builds muscle better than milk protein
A study from the University of Exeter has found that mycoprotein, the protein-rich food source that is unique to Quorn products, stimulates post-exercise muscle building to a greater extent than milk protein.
More than a protein factory
Researchers from the Stowers Institute for Medical Research have discovered a new function of ribosomes in human cells that may show the protein-making particle's role in destroying healthy mRNAs, the messages that decode DNA into protein.
More Protein News and Protein Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...