Nav: Home

Multiple mechanisms behind disease associated with unexpected heart attacks

April 04, 2019

TROY, N.Y. --Hypertrophic cardiomyopathy is best known for revealing itself in one certain way: as an unexpected, fatal heart attack during strenuous exercise. But researchers suspect as many as 300 mutations can individually cause enlargement of the heart that renders it vulnerable to strain. Recent studies examining three of those mutations at the molecular level found separate mechanisms at work, said Rensselaer Polytechnic Institute muscle protein and contraction expert Doug Swank, whose most recent paper on the topic was published today in the Journal of Physiology.

"Our work suggests that a simple one-size-fits-all hypothesis about how these mutations lead to an enlarged heart and to the disease is not likely to be the case. It's likely to be multiple mechanisms, perhaps depending on where the mutation is found in the protein or what it does to the protein," said Swank, a professor of biological sciences and member of the Rensselaer Center for Biotechnology and Interdisciplinary Studies.

Swank's research on hypertrophic cardiomyopathy is being conducted in collaboration with researchers at San Diego State University and Johns Hopkins University, with support from the National Institutes of Health.

The current paper and a previous study published in eLife in 2018 examine two mutations in myosin, a lever-shaped muscle protein that generates force to contract heart muscle tissue. Like all proteins, muscle proteins are chains of amino acids twisted into a three-dimensional shape that determines their function. But mutations slightly alter the composition of the amino acid chain, which also changes the shape of the protein and its performance.

Swanks' lab expresses the mutation in the wing muscle of a fruit fly, making it possible to examine how the mutations impact mechanical properties like force production, work and power. The eLife study looked at a mutation in myosin known as K146N (the mutation name is derived from the name of the affected amino acid residue and how it is altered in myosin). Examinations of fruit fly muscles with this mutation supported the "increased contractility hypothesis," which proposes that the heart is spending more time in a contracted state than in a relaxed state.

Ordinarily, as filaments of the myosin protein absorb energy, they bind to filaments of the protein actin and bend back upon themselves, pulling on the actin filaments and contracting the muscle.

"Our results for K146N indicated that the myosin bound longer to actin than it normally does," said Swank. "Considering that hundreds of these myosin molecules are doing this all the time, if they stay bound longer, at any given time you're going to have more myosin heads bound and pulling together than you otherwise would. So that gives you more force."

But the newly released Journal of Physiology study looked at an R249Q mutation and found a nearly opposite result. Fruit fly muscle with a R249Q mutation, which typically produces a less severe form of the disease, generated less force, less work, and less power. Swank said this result suggests that, in the heart, such a mutation is unlikely to be causing increased contractility - and yet it yields a similar outcome.

A third study to be published in the near future describes a mechanism for a mutation in another heart protein.

"Our hope is that, as we continue to understand how these mutations affect muscle contraction, a few general mechanisms will emerge which will make it possible to devise a group of treatments to address the disease," said Swank.
-end-
Swank, Rensselaer graduate student Kaylyn Bell, and undergraduate student Alice Huang were joined by San Diego State University researchers William A. Kronert and Sanford Bernstein on "The R249Q Hypertrophic Cardiomyopathy Mutation Decreases Contractility in Drosophila by Impeding Force Production," published in the Journal of Physiology.

About Rensselaer Polytechnic Institute

Founded in 1824, Rensselaer Polytechnic Institute is America's first technological research university. Rensselaer encompasses five schools, 32 research centers, more than 145 academic programs, and a dynamic community made up of more than 7,900 students and over 100,000 living alumni. Rensselaer faculty and alumni include more than 145 National Academy members, six members of the National Inventors Hall of Fame, six National Medal of Technology winners, five National Medal of Science winners, and a Nobel Prize winner in Physics. With nearly 200 years of experience advancing scientific and technological knowledge, Rensselaer remains focused on addressing global challenges with a spirit of ingenuity and collaboration. To learn more, please visit http://www.rpi.edu.

Rensselaer Polytechnic Institute

Related Protein Articles:

Hi-res view of protein complex shows how it breaks up protein tangles
A new, high-resolution view of the structure of Hsp104 (heat shock protein 104), a natural yeast protein nanomachine with six subunits, may show news ways to dismantle harmful protein clumps in disease.
Breaking the protein-DNA bond
A new Northwestern University study finds that unbound proteins in a cell break up protein-DNA bonds as they compete for the single-binding site.
FASEB Science Research Conference: Protein Kinases and Protein Phosphorylation
This conference focuses on the biology of protein kinases and phosphorylation signaling.
Largest resource of human protein-protein interactions can help interpret genomic data
An international research team has developed the largest database of protein-to-protein interaction networks, a resource that can illuminate how numerous disease-associated genes contribute to disease development and progression.
STAT2: Much more than an antiviral protein
A protein known for guarding against viral infections leads a double life, new research shows, and can interfere with cell growth and the defense against parasites.
A protein makes the difference
It is well-established knowledge that blood vessels foster the growth of tumors.
Nuclear protein causes neuroblastoma to become more aggressive
Aggressive forms of neuroblastoma contain a specific protein in their cells' nuclei that is not found in the nuclei of more benign forms of the cancer, and the discovery, made through research from the University of Rochester Medical Center, could lead to new forms of targeted therapy.
How a protein could become the next big sweetener
High-fructose corn syrup and sugar are on the outs with calorie-wary consumers.
High animal protein intake associated with higher, plant protein with lower mortality rate
The largest study to examine the effects of different sources of dietary protein found that a high intake of proteins from animal sources -- particularly processed and unprocessed red meats -- was associated with a higher mortality rate, while a high intake of protein from plant sources was associated with a lower risk of death.
Protein in, ammonia out
A recent study has compiled and analyzed data from 25 previous studies.

Related Protein Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Moving Forward
When the life you've built slips out of your grasp, you're often told it's best to move on. But is that true? Instead of forgetting the past, TED speakers describe how we can move forward with it. Guests include writers Nora McInerny and Suleika Jaouad, and human rights advocate Lindy Lou Isonhood.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...