Nav: Home

Multiple mechanisms behind disease associated with unexpected heart attacks

April 04, 2019

TROY, N.Y. --Hypertrophic cardiomyopathy is best known for revealing itself in one certain way: as an unexpected, fatal heart attack during strenuous exercise. But researchers suspect as many as 300 mutations can individually cause enlargement of the heart that renders it vulnerable to strain. Recent studies examining three of those mutations at the molecular level found separate mechanisms at work, said Rensselaer Polytechnic Institute muscle protein and contraction expert Doug Swank, whose most recent paper on the topic was published today in the Journal of Physiology.

"Our work suggests that a simple one-size-fits-all hypothesis about how these mutations lead to an enlarged heart and to the disease is not likely to be the case. It's likely to be multiple mechanisms, perhaps depending on where the mutation is found in the protein or what it does to the protein," said Swank, a professor of biological sciences and member of the Rensselaer Center for Biotechnology and Interdisciplinary Studies.

Swank's research on hypertrophic cardiomyopathy is being conducted in collaboration with researchers at San Diego State University and Johns Hopkins University, with support from the National Institutes of Health.

The current paper and a previous study published in eLife in 2018 examine two mutations in myosin, a lever-shaped muscle protein that generates force to contract heart muscle tissue. Like all proteins, muscle proteins are chains of amino acids twisted into a three-dimensional shape that determines their function. But mutations slightly alter the composition of the amino acid chain, which also changes the shape of the protein and its performance.

Swanks' lab expresses the mutation in the wing muscle of a fruit fly, making it possible to examine how the mutations impact mechanical properties like force production, work and power. The eLife study looked at a mutation in myosin known as K146N (the mutation name is derived from the name of the affected amino acid residue and how it is altered in myosin). Examinations of fruit fly muscles with this mutation supported the "increased contractility hypothesis," which proposes that the heart is spending more time in a contracted state than in a relaxed state.

Ordinarily, as filaments of the myosin protein absorb energy, they bind to filaments of the protein actin and bend back upon themselves, pulling on the actin filaments and contracting the muscle.

"Our results for K146N indicated that the myosin bound longer to actin than it normally does," said Swank. "Considering that hundreds of these myosin molecules are doing this all the time, if they stay bound longer, at any given time you're going to have more myosin heads bound and pulling together than you otherwise would. So that gives you more force."

But the newly released Journal of Physiology study looked at an R249Q mutation and found a nearly opposite result. Fruit fly muscle with a R249Q mutation, which typically produces a less severe form of the disease, generated less force, less work, and less power. Swank said this result suggests that, in the heart, such a mutation is unlikely to be causing increased contractility - and yet it yields a similar outcome.

A third study to be published in the near future describes a mechanism for a mutation in another heart protein.

"Our hope is that, as we continue to understand how these mutations affect muscle contraction, a few general mechanisms will emerge which will make it possible to devise a group of treatments to address the disease," said Swank.
-end-
Swank, Rensselaer graduate student Kaylyn Bell, and undergraduate student Alice Huang were joined by San Diego State University researchers William A. Kronert and Sanford Bernstein on "The R249Q Hypertrophic Cardiomyopathy Mutation Decreases Contractility in Drosophila by Impeding Force Production," published in the Journal of Physiology.

About Rensselaer Polytechnic Institute

Founded in 1824, Rensselaer Polytechnic Institute is America's first technological research university. Rensselaer encompasses five schools, 32 research centers, more than 145 academic programs, and a dynamic community made up of more than 7,900 students and over 100,000 living alumni. Rensselaer faculty and alumni include more than 145 National Academy members, six members of the National Inventors Hall of Fame, six National Medal of Technology winners, five National Medal of Science winners, and a Nobel Prize winner in Physics. With nearly 200 years of experience advancing scientific and technological knowledge, Rensselaer remains focused on addressing global challenges with a spirit of ingenuity and collaboration. To learn more, please visit http://www.rpi.edu.

Rensselaer Polytechnic Institute

Related Protein Articles:

Substituting the next-best protein
Children born with Duchenne muscular dystrophy have a mutation in the X-chromosome gene that would normally code for dystrophin, a protein that provides structural integrity to skeletal muscles.
A direct protein-to-protein binding couples cell survival to cell proliferation
The regulators of apoptosis watch over cell replication and the decision to enter the cell cycle.
A protein that controls inflammation
A study by the research team of Prof. Geert van Loo (VIB-UGent Center for Inflammation Research) has unraveled a critical molecular mechanism behind autoimmune and inflammatory diseases such as rheumatoid arthritis, Crohn's disease, and psoriasis.
Resurrecting ancient protein partners reveals origin of protein regulation
After reconstructing the ancient forms of two cellular proteins, scientists discovered the earliest known instance of a complex form of protein regulation.
Sensing protein wellbeing
The folding state of the proteins in live cells often reflect the cell's general health.
Protein injections in medicine
One day, medical compounds could be introduced into cells with the help of bacterial toxins.
Discovery of an unusual protein
Scientists from Bremen discover an unusual protein playing a significant role in the Earth's nitrogen cycle.
Protein aggregation: Protein assemblies relevant not only for neurodegenerative disease
Amyloid fibrils play a crucial role in neurodegenerative illnesses. Scientists from Heinrich Heine University Düsseldorf (HHU) and Forschungszentrum Jülich have now been able to use cryo-electron microscopy (cryo-EM) to decode the spatial structure of the fibrils that are formed from PI3K SH3 domains - an important model system for research.
Old protein, new tricks: UMD connects a protein to antibody immunity for the first time
How can a protein be a major contributor in the development of birth defects, and also hold the potential to provide symptom relief from autoimmune diseases like lupus?
Infection-fighting protein also senses protein misfolding in non-infected cells
Researchers at the University of Toronto have uncovered an immune mechanism by which host cells combat bacterial infection, and at the same time found that a protein crucial to that process can sense and respond to misfolded proteins in all mammalian cells.
More Protein News and Protein Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#569 Facing Fear
What do you fear? I mean really fear? Well, ok, maybe right now that's tough. We're living in a new age and definition of fear. But what do we do about it? Eva Holland has faced her fears, including trauma and phobia. She lived to tell the tale and write a book: "Nerve: Adventures in the Science of Fear".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.