New discovery provides key to side effects caused by erectile dysfunction drugs

April 04, 2019

In a study published in Science Advances magazine, researchers from the University of California, Irvine have captured, for the first time, the full-length structure of the rod photoreceptor phosphodiesterase 6 (PDE6), an enzyme that plays an indispensable role in human vision.

PDEs are associated with various diseases and are targets of several widely used drugs and major targets for drug development. Unfortunately, many of these enzymes have similar structures, particularly their catalytic domains, where the chemical reaction takes place. Because of this, inhibitors that target one type of PDE can stop the reaction in multiple members of the PDE family, resulting in unwanted side effects.

PDE5 inhibitors, for example, such as sildenafil (Viagra) and vardenafil (Levitra), which are used to treat erectile dysfunction and pulmonary hypertension, can stop the reaction in PDE6 resulting in side effects affecting vision.

"PDE5 inhibitors are associated with several visual side effects, including blurred vision, changes in color vision, extreme sensitivity to light, and in extreme cases, damage to the optic nerve that relays optical signals to the brain," said Sahil Gulati, PhD. "These side effects are caused by the binding of PDE5 inhibitors to PDE6 in the retina."

Several cases of patients experiencing vision changes after using sildenafil citrate have been reported.

Led by Gulati, researchers, including world renowned vision researcher Krzysztof Palczewski, PhD, director of the UCI Center for Translational Vision Research at the Gavin Herbert Eye Institute, Department of Ophthalmology at the UCI School of Medicine, and a team from the University of Basel in Switzerland, used single-particle cryo-electron microscopy to visualize the full-length PDE6 enzyme. They revealed fish-hook-like regions of the PDE6 structure that forms potential signal transduction routes from the regulatory domains of PDE6 to its catalytic domain.

"The high-resolution images we were able to capture clearly underscore the immense hidden beauty of human vision and reveal several features of PDE6 that were previously unseen," said Gulati. "Included among them were some very promising regions of PDE6 that resemble fish-hooks. These regions are responsible for controlling PDE activity. By targeting the fish-hook-like region with a new class of PDE inhibitors, drug development companies may be able to eliminate unwanted side effects of certain PDE targeting drugs."
-end-
Funding for this research was supported in part by grants from the National Institutes of Health (R24EY024864 and R01EY027283), Research to Prevent Blindness (RPB) and the Canadian Institute for Advanced Research (CIFAR).

About the UCI School of Medicine: Each year, the UCI School of Medicine educates more than 400 medical students, as well as 200 doctoral and master's students. More than 600 residents and fellows are trained at UC Irvine Medical Center and affiliated institutions. The UCI School of Medicine offers an MD degree, a dual MD/PhD medical scientist training program, PhDs and master's degrees in anatomy and neurobiology, biomedical sciences, genetic counseling, epidemiology, environmental health sciences, pathology, pharmacology, physiology and biophysics, and translational sciences. Medical students also may pursue an MD/MBA program, a combined MD/Master's in Public Health or a dual MD/master's program called the Program in Medical Education for the Latino Community (PRIME-LC). UCI School of Medicine is accredited by Liaison Committee on Medical Accreditation (LCME), and ranks among the top 50 nationwide for research. For more information, visit: som.uci.edu.

About the University of California, Irvine: Founded in 1965, UCI is the youngest member of the prestigious Association of American Universities. The campus has produced three Nobel laureates and is known for its academic achievement, premier research, innovation and anteater mascot. Led by Chancellor Howard Gillman, UCI has more than 36,000 students and offers 222 degree programs. It's located in one of the world's safest and most economically vibrant communities and is Orange County's second-largest employer, contributing $5 billion annually to the local economy. For more on UCI, visit http://www.uci.edu.

University of California - Irvine

Related Drug Development Articles from Brightsurf:

FDA support for oncology drug development during COVID-19
This Viewpoint from the U.S. Food and Drug Administration puts into context recent guidance on clinical trials during COVID-19 for oncology and shares insight regarding regulatory challenges and lessons learned.

COVID-19 drug development could benefit from approach used against flu
A new study from researchers at The University of Texas at Austin has found that some antivirals are useful for more than helping sick people get better -- they also can prevent thousands of deaths and hundreds of thousands of virus cases if used in the early stages of infection.

Chemistry breakthrough could speed up drug development
Scientists have successfully developed a new technique to reliably grow crystals of organic soluble molecules from nanoscale droplets, unlocking the potential of accelerated new drug development.

New model of the GI tract could speed drug development
MIT engineers have devised a way to speed new drug development by rapidly testing how well they are absorbed in the small intestine.

Super-charging drug development for COVID-19
Researchers are using cell-free manufacturing to ramp up production of valinomycin, a promising drug that has proven effective in obliterating SARS-CoV in cellular cultures.

Drug development for rare diseases affecting children is increasing
The number of treatments for rare diseases affecting children has increased, a new study suggests.

New opportunity for cancer drug development
After years of research on cell surface receptors called Frizzleds, researchers at Karolinska Institutet in Sweden provide the proof-of-principle that these receptors are druggable by small molecules.

Novel paradigm in drug development
Targeted protein degradation (TPD) is a new paradigm in drug discovery that could lead to the development of new medicines to treat diseases such as cancer more effectively.

Turbo chip for drug development
In spite of increasing demand, the number of newly developed drugs decreased continuously in the past decades.

A breakthrough for brain tumor drug development
Glioblastoma is a devastating disease with poor survival stats due in part to a lack of preclinical models for new drug testing.

Read More: Drug Development News and Drug Development Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.