NREL reveals potential for capturing waste heat via nanotubes

April 05, 2016

A finely tuned carbon nanotube thin film has the potential to act as a thermoelectric power generator that captures and uses waste heat, according to researchers at the Energy Department's National Renewable Energy Laboratory (NREL).

The research could help guide the manufacture of thermoelectric devices based on either single-walled carbon nanotube (SWCNT) films or composites containing these nanotubes. Because more than half of the energy consumed worldwide is rejected primarily as waste heat, the idea of thermoelectric power generation is emerging as an important part of renewable energy and energy-efficiency portfolios.

"There have not been many examples where people have really looked at the intrinsic thermoelectric properties of carbon nanotubes and that's what we feel this paper does," said Andrew Ferguson, a research scientist in NREL's Chemical and Materials Science Center and co-lead author of the paper with Jeffrey Blackburn.

The research, "Tailored Semiconducting Carbon Nanotube Networks with Enhanced Thermoelectric Properties," appears in the journal Nature Energy, and is a collaboration between NREL, Professor Yong-Hyun Kim's group at the Korea Advanced Institute of Science and Technology, and Professor Barry Zink's group at the University of Denver. The other authors from NREL are Azure Avery (now an assistant professor at Metropolitan State University of Denver), Ben Zhou, Elisa Miller, Rachelle Ihly, Kevin Mistry, and Sarah Guillot.

Nanostructured inorganic semiconductors have demonstrated promise for improving the performance of thermoelectric devices. Inorganic materials can run into problems when the semiconductor needs to be lightweight, flexible, or irregularly shaped because they are often heavy and lack the required flexibility. Carbon nanotubes, which are organic, are lighter and more flexible.

How useful a particular SWCNT is for thermoelectrics, however, depends on whether the nanotube is metallic or a semiconductor, both of which are produced simultaneously in SWCNT syntheses. A metallic nanotube would harm devices such as a thermoelectric generator, whereas a semiconductor nanotube actually enhances performance. Furthermore, as with most optical and electrical devices, the electrical band gap of the semiconducting SWCNT should affect the thermoelectric performance as well.

Fortunately, Blackburn, a senior scientist and manager of NREL's Spectroscopy and Photoscience group, has developed an expertise at separating semiconducting nanotubes from metallic ones and his methods were critical to the research, Ferguson said.

"We are at a distinct advantage here that we can actually use that to probe the fundamental properties of the nanotubes," he said.

To generate highly enriched semiconducting samples, the researchers extracted nanotubes from polydisperse soot using polyfluorene-based polymers. The semiconducting SWCNTs were prepared on a glass substrate to create a film, which was then soaked in a solution of oxidant, triethyloxonium hexachloroantimonate (OA), a process known as "doping." Doping increases the density of charge carriers, which flow through the film to conduct electricity. The researchers found the samples that performed the best were exposed to a higher concentration of OA, but not at the highest doping levels. They also discovered an optimum diameter for a carbon nanotube to achieve the best thermoelectric performance.

When it comes to thermoelectric materials, a trade-off exists between thermopower (the voltage obtained when subjecting a material to a temperature gradient) and electrical conductivity because thermopower decreases with increasing conductivity. The researchers discovered, however, that with carbon nanotubes you can retain large thermopowers even at very high electrical conductivities. Furthermore, the researchers found that their doping strategy, while dramatically increasing the electrical conductivity, actually decreased the thermal conductivity. This unexpected result is another benefit of carbon nanotubes for thermoelectric power generation, since the best thermoelectric materials must have high electrical conductivity and thermopower, while maintaining low thermal conductivity.
-end-
The investigation conducted by the NREL researchers was funded by a grant from its Laboratory Directed Research and Development program, while the development of the semiconducting SWCNT separations was funded by the Solar Photochemistry Program within the Energy Department's Office of Basic Energy Sciences.

NREL is the U.S. Department of Energy's primary national laboratory for renewable energy and energy efficiency research and development. NREL is operated for the Energy Department by The Alliance for Sustainable Energy, LLC.

Visit NREL online at http://www.nrel.gov

DOE/National Renewable Energy Laboratory

Related Carbon Nanotubes Articles from Brightsurf:

How plantains and carbon nanotubes can improve cars
Researchers from the University of Johannesburg have shown that plantain, a starchy type of banana, is a promising renewable source for an emerging type of lighter, rust-free composite materials for the automotive industry.

New production method for carbon nanotubes gets green light
A new method of producing carbon nanotubes -- tiny molecules with incredible physical properties used in touchscreen displays, 5G networks and flexible electronics -- has been given the green light by researchers, meaning work in this crucial field can continue.

Growing carbon nanotubes with the right twist
Researchers synthetize nanotubes with a specific structure expanding previous theories on carbon nanotube growth.

Research shows old newspapers can be used to grow carbon nanotubes
New research has found that old newspaper provide a cheap and green solution for the bulk production of single walled carbon nanotubes.

Clean carbon nanotubes with superb properties
Scientists at Aalto University, Finland, and Nagoya University, Japan, have found a new way to make ultra-clean carbon nanotube transistors with superior semiconducting properties.

Dietary fiber effectively purifies carbon nanotubes
A dietary fiber can help separate out semiconducting carbon nanotubes used for making transistors for flexible electronics.

Why modified carbon nanotubes can help the reproducibility problem
Scientists at Tokyo Institute of Technology (Tokyo Tech) conducted an in-depth study on how carbon nanotubes with oxygen-containing groups can be used to greatly enhance the performance of perovskite solar cells.

Tensile strength of carbon nanotubes depends on their chiral structures
Single-walled carbon nanotubes should theoretically be extremely strong, but it remains unclear why their experimental tensile strengths are lower and vary among nanotubes.

New study reveals carbon nanotubes measurement possible for the first time
Swansea University scientists report an entirely new approach to manipulation of carbon nanotubes that allows physical measurements to be made on carbon nanotubes that have previously only been possible by theoretical computation.

Neural networks will help manufacture carbon nanotubes
A team of scientists from Skoltech's Laboratory of Nanomaterials proposed a neural-network-based method for monitoring the growth of carbon nanotubes, preparing the ground for a new generation of sophisticated electronic devices.

Read More: Carbon Nanotubes News and Carbon Nanotubes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.