Nav: Home

Biological age-predicting 'epigenetic clock' for studying how to extend lifespan

April 05, 2017

Lots of factors can contribute to how fast an organism ages: diet, genetics and environmental interventions can all influence lifespan. But in order to understand how each factor influences aging -- and which ones may help slow its progression -- researchers need an accurate biomarker, a clock that distinguishes between chronological and biological age. A traditional clock can measure the passage of chronological time and chronological age, but a so-called epigenetic clock can measure biological age. Epigenetic clocks already exist to reflect the pace of aging in humans, but in order to measure and test the effects of interventions in the lab, BWH investigators have developed an age-predicting clock designed for studies in mice. The new clock accurately predicts mouse biological age and the effects of genetic and dietary factors, giving the scientific community a new tool to better understand aging and test new interventions. Their results are published this week in Cell Metabolism.

To develop their "clock," researchers took blood samples from 141 mice and, from among two million sites, pinpointed 90 sites from across the methylome that can predict biological age. (The methylome refers to all of the sites in the genome where chemical changes known as methylation take place, changing how and when DNA information is read.) The team then tested the effects of interventions that are known to increase lifespan and delay aging, including calorie restriction and gene knockouts. They also used the clock to measure the biological ages of induced pluripotent stem cells (iPSCs), which resemble younger blood.

The research team hopes that their technique will be useful for researchers who are studying new aging interventions in the lab. Currently, it can take years and hundreds of thousands of dollars to study mice over their lifespans and determine the effectiveness of a single intervention. Although it is no small feat to sequence the entire methylome, the new clock could allow for studies to be carried out much faster and on a larger scale.

"This is a new and much needed tool for studying how changes in diet, environment, genetic manipulations and more can influence health and lifespan," said corresponding author Vadim Gladyshev, PhD, of BWH's Division of Genetics. "Our hope is that researchers will be able to use this biomarker for aging to find new interventions that can extend lifespan, examine conditions that support rejuvenation and study the biology of aging and lifespan control."
-end-
Funding for this work was provided by the National Institutes of Health.

Paper cited: Petkovich DA et al. "Using DNA Methylation Profiling to Evaluate Biological Age and Longevity Interventions." Cell Metabolism DOI: 10.1016/j.cmet.2017.03.016

Brigham and Women's Hospital

Related Aging Articles:

Researchers discover new cause of cell aging
New research from the USC Viterbi School of Engineering could be key to our understanding of how the aging process works.
Deep Aging Clocks: The emergence of AI-based biomarkers of aging and longevity
The advent of deep biomarkers of aging, longevity and mortality presents a range of non-obvious applications.
Intelligence can link to health and aging
For over 100 years, scientists have sought to understand what links a person's general intelligence, health and aging.
Putting the brakes on aging
Salk Institute researchers have developed a new gene therapy to help decelerate the aging process.
New insights into the aging brain
A group of scientists at the Gladstone Institutes investigated why the choroid plexus contains so much more klotho than other brain regions.
We all want 'healthy aging,' but what is it, really? New report looks for answers
Led by Paul Mulhausen, MD, MHS, FACP, AGSF, colleagues from the American Geriatrics Society (AGS) set looking critically at what 'healthy aging' really means.
New insight into aging
Researchers at the Montreal Neurological Institute and Hospital (The Neuro) of McGill University examined the effects of aging on neuroplasticity in the primary auditory cortex, the part of the brain that processes auditory information.
Aging may be as old as life itself
Aging has had a bad rap since it has long been considered a consequence of biology's concentrated effort on enhancing survival through reproductivity.
A new link between cancer and aging
Human lung cancer cells resist dying by controlling parts of the aging process, according to findings published online May 10th in the Journal of Biological Chemistry.
American Federation for Aging Research experts featured in PBS special: Incredible Aging
Fourteen AFAR experts are among those featured in
More Aging News and Aging Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab