Nav: Home

Monoclonal antibody cures Marburg infection in monkeys

April 05, 2017

WHAT:

Scientists funded by the National Institutes of Health have found that an experimental treatment cured 100 percent of guinea pigs and rhesus monkeys in late stages of infection with lethal levels of Marburg and Ravn viruses, relatives of the Ebola virus. Although the Marburg and Ravn viruses are less familiar than Ebola virus, both can resemble Ebola in symptoms and outcomes in people, and both lack preventive and therapeutic countermeasures.

The study involved giving the animals a therapeutic candidate, MR191-N, which is a monoclonal antibody derived from a person who survived Marburg disease. Monoclonal antibodies are immune system fighters designed to bind to a specific part of an invading virus or bacterium to treat disease. The authors report that two doses of MR191-N were able to confer protection of up to 100 percent when treatment was started up to 5 days post infection. Prior studies of different experimental Marburg treatments involved daily dosing for 7 and 14 days, respectively, with treatment beginning closer to the time of infection.

The study was led by scientists at the University of Texas Medical Branch Galveston National Laboratory and Mapp Biopharmaceutical, Inc., and included collaborators from Vanderbilt University Medical Center, the University of Natural Resources and Life Sciences in Austria, and The Scripps Research Institute. The NIH's National Institute of Allergy and Infectious Diseases (NIAID) provided project funding.

The researchers are now working with NIAID's preclinical services group to perform the additional safety testing necessary to advance the monoclonal antibody treatment to initial human clinical studies. Public health workers learned during the 2014-15 Ebola outbreak in West Africa that lack of available treatment options kept diseased and at-risk people away from treatment centers, making disease tracking and outbreak containment more difficult. They fear the same situation would develop in a large-scale Marburg outbreak.
-end-
ARTICLE:

C Mire et al. Therapeutic treatment of Marburg and Ravn virus disease in nonhuman primates with a human monoclonal antibody. Science Translational Medicine DOI: 10.1126/scitranslmed.aai8711 (2017).

WHO:

Tina M. Parker, DVM, MScPH, of NIAID's Office of Biodefense, Research Resources and Translational Research, is available to comment on this study.

CONTACT:

To schedule interviews, please contact Ken Pekoc, (301) 402-1663, kpekoc@niaid.nih.gov.

This research was supported by the following NIH grants: SB1AI082744, U19AI109762, U19AI109711, and UC7AI094660. Continued development will be supported through a Task Order awarded in 2017 under the Assistant Secretary for Preparedness and Response (ASPR) Biomedical Advanced Research and Development Authority (BARDA) Centers for Innovation in Advanced Development and Manufacturing (CIADM) program.

NIAID conducts and supports research--at NIH, throughout the United States, and worldwide--to study the causes of infectious and immune-mediated diseases, and to develop better means of preventing, diagnosing and treating these illnesses. News releases, fact sheets and other NIAID-related materials are available on the NIAID website.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov/.

NIH/National Institute of Allergy and Infectious Diseases

Related Ebola Virus Articles:

Tulane researchers help find possible explanation for unparalleled spread of Ebola virus
The world may be closer to knowing why Ebola spreads so easily thanks to a team of researchers from Tulane University and other leading institutions who discovered a new biological activity in a small protein from the deadly virus.
New CDISC data standard aids development of therapies for Ebola virus
The Clinical Data Interchange Standards Consortium (CDISC) and the Infectious Diseases Data Observatory (IDDO) announce the availability of a new standard to assist in the collection, aggregation and analysis of Ebola virus disease (EVD) research data.
Silence is golden -- Suppressing host response to Ebola virus may help to control infection
The Ebola virus causes a severe, often fatal illness when it infects the human body.
How do Ebola virus proteins released in exosomes affect the immune system?
Cells infected by the deadly Ebola virus may release viral proteins such as VP40 packaged in exosomes, which, as new research indicates, can affect immune cells throughout the body impairing their ability to combat the infection and to seek out and destroy hidden virus.
Blood test can predict life or death outcome for patients with Ebola virus disease
Scientists have identified a 'molecular barcode' in the blood of patients with Ebola that can predict whether they are likely to survive or die from the viral infection.
NIH scientists identify early impact of Ebola virus on immune system
A new mouse model of early Ebola virus (EBOV) infection has shown National Institutes of Health (NIH) scientists and colleagues how early responses of the immune system can affect development of EBOV disease.
Could co-infection with other viruses affect the survival of those with Ebola virus?
Could co-infection with other viruses have a detrimental affect on Ebola survival, and why did some show Ebola symptoms without having the virus?
Researchers stress the need for research on Ebola virus disease in great apes
Ebola virus disease (EVD) is a threat to human health, but it also threatens the survival of African great apes.
Antimalarial being tested as possible Ebola virus drug
The National Center for Advancing Translational Sciences (NCATS) recently awarded $596,533.00 to Collaborations Pharmaceuticals, Inc.
Antibodies from Ebola survivors neutralize virus, protect against infection in lab mice
A study by scientists at the Emory Vaccine Center, in collaboration with the biotechnology company Atreca, Inc., has found that antibodies generated from the blood of survivors of Ebola virus disease can strongly neutralize the Ebola virus in the laboratory and protect mice from a lethal viral challenge.

Related Ebola Virus Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...