Project Hotspot

April 05, 2017

Boulder, Colo., USA: In their study published in Lithosphere this week, James Kessler and colleagues examine the geology of a scientific borehole drilled into the Snake River Plain, Idaho, USA, to investigate the potential for geothermal energy at depth. The site discussed in this paper is on the Mountain Home Air Force Base, where a drillhole in 1984 indicated that geothermal fluids were present at about 1.8 km depth.

With ARRA funding for new energy research and a grant from the International Continental Drilling Program, Kessler and colleagues drilled three 2-km-deep holes in the region. The Snake River Plain is the track of the Yellowstone Hotspot, and consists of rhyolite and basalt. Volcanic rocks near Yellowstone are quite young, whereas at Mountain Home, Idaho, the rocks are three to five million years old. Despite the abundant evidence for heat, the Snake River Plain does not produce geothermal energy due to a cool water aquifer present in the upper 500 m of the rocks.

The work reported in this paper is on the Mountain Home site, where waters of about 150 °C were encounter at 1745 m depth. Kessler and colleagues report on the geology of the basaltic rocks of the borehole, including determining the distribution of the basalts, the presence of faults and fractures at depth, and evidence for older hydrothermal interactions.

They also worked with geophysicists at the University of Alberta to determine the stresses at depth in the site. When holes penetrate rocks at depth, characteristic fractures form and their orientations can be used to determine the orientations of the stresses. The team reports that the maximum horizontal stresses here are at N 45°E, which suggests a complex geology at depth that might contribute to the localization of the geothermal fluids. Kessler and colleagues posit that these stresses are similar to the stresses observed in northern Nevada.

Another high point of this work is that this reports the results of James Kessler's Ph.D. work; it also included two undergraduates, Mikaela Pulsipher and Fallon Rowe, and master's student Jerome Varriale as co-authors.
-end-
ARTICLE

Geology and in situ Stress of the MH-2 Borehole, Idaho, U.S.A.: Insights into Western Snake River Plain Structure from Geothermal Exploration Drilling http://lithosphere.gsapubs.org/content/early/2017/04/04/L609.1.abstract

Authors: J.A. Kessler, Utah State University; K.K. Bradbury; J.P. Evans*; M.A. Pulsipher; D.R. Schmitt; J.W. Shervais; F.E. Rowe; and J. Varriale

*Contact: James Evans, james.evans@usu.edu

Figure caption: Kessler et al. Figure 5. Examples of fractures and vesicles in the MH-2 core.

Open-access abstracts for LITHOSPHERE papers are online at http://lithosphere.gsapubs.org/content/early/recent. Representatives of the media may obtain complimentary PDF copies of LITHOSPHERE articles by contacting Kea Giles at the address above. Please discuss articles of interest with the authors before publishing stories on their work, and please make reference to LITHOSPHERE in articles published. Contact Kea Giles for additional information or assistance. Non-media requests for articles may be directed to GSA Sales and Service, gsaservice@geosociety.org.

http://www.geosociety.org/

Geological Society of America

Related Geothermal Energy Articles from Brightsurf:

First measurement of electron energy distributions, could enable sustainable energy technologies
To answer a question crucial to technologies such as energy conversion, a team of researchers at the University of Michigan, Purdue University and the University of Liverpool in the UK have figured out a way to measure how many 'hot charge carriers' -- for example, electrons with extra energy -- are present in a metal nanostructure.

Mandatory building energy audits alone do not overcome barriers to energy efficiency
A pioneering law may be insufficient to incentivize significant energy use reductions in residential and office buildings, a new study finds.

Injection strategies are crucial for geothermal projects
The fear of earthquakes is one of the main reasons for reservations about geothermal energy.

Geothermal energy: Drilling a 3,000 meters deep well
Destabilising the precarious equilibrium at depth with geothermal wells may reactivate the geological layers causing earthquakes.

Mapping the energy transport mechanism of chalcogenide perovskite for solar energy use
Researchers from Lehigh University have, for the first time, revealed first-hand knowledge about the fundamental energy carrier properties of chalcogenide perovskite CaZrSe3, important for potential solar energy use.

New exploration method for geothermal energy
Where to drill? This is the basic question in the exploration of underground energy resources, such as geothermal energy.

New discipline proposed: Macro-energy systems -- the science of the energy transition
In a perspective published in Joule on Aug. 14, a group of researchers led by Stanford University propose a new academic discipline, 'macro-energy systems,' as the science of the energy transition.

How much energy storage costs must fall to reach renewable energy's full potential
The cost of energy storage will be critical in determining how much renewable energy can contribute to the decarbonization of electricity.

Shifts to renewable energy can drive up energy poverty, PSU study finds
Efforts to shift away from fossil fuels and replace oil and coal with renewable energy sources can help reduce carbon emissions but do so at the expense of increased inequality, according to a new Portland State University study

Lessons from Pohang: Solving geothermal energy's earthquake problem
A geothermal energy project triggered a damaging earthquake in 2017 in South Korea.

Read More: Geothermal Energy News and Geothermal Energy Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.