Nav: Home

Can we imitate organisms' abilities to decode water patterns for new technologies?

April 05, 2018

The shape of water. Can it tell us about what drives romance? Among fish, it might. Eva Kanso, a professor of Aerospace and Mechanical Engineering at the USC Viterbi School of Engineering studies fluid flows and almost like a forensic expert, Kanso, along with her team, is studying how aquatic signals are transported through the water.

When it comes to mating, tiny crustaceans called copepods are one of the most abundant multi-cellular organisms, says Kanso, the Zohrab Kaprielian Fellow in Engineering.

To locate their mate, male copepods search for and follow the hydrodynamic and chemical trail of the female. Scientists like Kanso believe aquatic organisms transmit and read information through the movements they make and the wakes they leave behind in the water. Harbor seals, for example, have been shown to track the wake of a moving object, even when the seal is blindfolded and initially acoustically-masked. Researchers believe the flow of water encodes a pattern of information--a type of language by which an organism can call another to mate, use to avoid predators or even in the case of salmon, begin upstream migration.

Just as a seagull's footprint in the sand is different than a human's, every moving body in the water generates a different pattern or wake based on certain factors such as the size of the body that created it or the speed at which it is moving (a fast-swimming and scared animal might generate a distinct wake by the more frequent and faster beat of its tail). Kanso would like to understand how these water flow patterns are perceived at a local level, by an organism or a bio-inspired vehicle, and decode them to ascertain what's happening in the water at a larger scale.

Using a computational physics model, Kanso, and PhD students Brendan Colvert and Mohamad Alsalman, generated various fluid flow patterns, then using machine learning, trained an algorithm to correctly identify these fluid patterns, achieving 99 percent accuracy. By doing this, the researchers developed an algorithm to, in a sense, mimic an aquatic sensory intelligence with regards to the patterns created in water. It is one of the first instances in which machine learning was applied to characterizing patterns in fluid flows.

Why does it matter? Consider how technologies have evolved based on the way a bat generates awareness of an environment. Just as sonar waves are used by submarines to actively probe their environment, there could be navigational uses for knowledge of water patterns under the sea. Without GPS, underwater vehicles equipped with sensors that are trained with such algorithms could, in principle, detect vehicles of a particular size and speed, known to generate certain flow patterns. By the same token, understanding the patterns that make a given wake detectable could help design underwater vehicles that leave behind inconspicuous wakes.

Kanso and her team are now testing these algorithms on real-life data and extending their scope to spatially-distributed networks of sensors that have the potential to create more robust and accurate maps of the flow patterns.
-end-
Kanso's research conducted with Brendan Colvert and Mohamad Alsalman, is supported by the Department of Defense (Office of Naval Research, Army Research Office, and NDSEG program) and documented in "Classifying vortex wakes using neural networks." The article was recently published in Bioinspiration & Biomimetics.

University of Southern California

Related Engineering Articles:

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.
Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.
Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.
New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.
Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.
Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.
Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.
What can snakes teach us about engineering friction?
If you want to know how to make a sneaker with better traction, just ask a snake.
Engineering a plastic-eating enzyme
Scientists have engineered an enzyme which can digest some of our most commonly polluting plastics, providing a potential solution to one of the world's biggest environmental problems.
A new way to do metabolic engineering
University of Illinois researchers have created a novel metabolic engineering method that combines transcriptional activation, transcriptional interference, and gene deletion, and executes them simultaneously, making the process faster and easier.
More Engineering News and Engineering Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.