Nav: Home

Tidying up: A new way to direct trash to autophagy

April 05, 2019

Marie Kondo herself couldn't do it any better.

Usually cells are good at recognizing what doesn't spark joy. They're constantly cleaning house -- picking through their own stuff to clear out what no longer works.

Damaged or superfluous organelles. Proteins that don't fold just so.

But what happens when the cell fails to recognize trash? Accumulation of defective cellular material has been implicated in disorders such as Huntington's disease, Alzheimer's, Parkinson's disease and Lou Gehrig's Disease/ALS, where this trash blocks neurons from transmitting signals.

Now, researchers at Washington University in St. Louis have uncovered a previously unknown structural feature of living cells that is critical to tidying up.

The research, led by Richard S. Marshall, research scientist, and Richard Vierstra, the George and Charmaine Mallinckrodt Professor of Biology in Arts & Sciences, is published in the April 4 issue of the journal Cell.

New receptors for taking out the trash

One major way that cells clean up their trash is through autophagy. In this process, cells engulf unwanted material in vesicles that are then deposited in a trash bin called the vacuole or lysosome. There, the trash is degraded and its building blocks reused.

Key to this recycling process are the receptors that recognize the trash and tether it to a protein called ATG8 that lines the engulfing vesicle. Previously, all of these receptors were thought to be related and bound to ATG8 via the same mechanism.

"There is the binding site on ATG8 that everyone knew about before, and how it interacts with autophagy receptors," Marshall said. "But we found that if you completely rotate the molecule 180 degrees, there is the new site on the opposite side that recognizes a long list of additional cargo receptors.

"A whole slew of proteins in plants, yeast and humans are using this new binding site and its suite of cognate receptors to interact with ATG8," he added.

To latch to this particular docking platform, the newly discovered cargo receptors use a binding site known as a ubiquitin-interacting motif, or UIM, previously not linked to autophagy.

"This is a completely different mechanism of interaction," Marshall said. "Its discovery represents an explosion in the number of potential ATG8-interacting proteins that could be controlling autophagy, all of which are using this new site."

Human health implications

Understanding how these new cargo receptors work could shed light on new preventive or therapeutic targets relevant to human disease.

Marshall and Vierstra also described a particular receptor in this new collection that helps trash a key protein called CDC48 or p97.

Proteotoxic stress occurs when faulty proteins build up, and cells can't get rid of them. CDC48 is part of this process, but even it can go bad. The faulty proteins and CDC48 tend to start forming tangled aggregates like those recognized in Alzheimer's and Parkinson's disease.

"CDC48 is an unfoldase, which means it grabs proteins, unfolds them and delivers them to proteases that will degrade them," Vierstra said. "Keeping your protein complement happy and functional requires CDC48. If it doesn't work, you have all kinds of problems, including clogged neurons."

Vierstra notes that CDC48 exists as a hexamer -- a molecular complex with six repeating units -- and even one bad copy within the complex will send the whole thing to autophagic turnover.

"As they say, one bad apple seems to spoil the whole barrel," Vierstra said. "But in several neurological disorders, you only need one faulty CDC48 to go awry to have bad consequences -- if you can't clean up its mess."
-end-
This research was supported by grants from the National Institutes of Health, National Institute of General Medical Science (R01-GM124452) and the National Science Foundation, Plant Genome Research Program (IOS-1339325).

Washington University in St. Louis

Related Autophagy Articles:

Autophagy degrades liquid droplets, but not aggregates, of proteins
Autophagy is a mechanism through which cellular protein is degraded.
Autophagy genes act as tumor suppressors in ovarian cancer
Researchers at the Medical University of South Carolina and University of California at San Diego report in PLOS Genetics that the loss of BECN1 promoted early ovarian cancer formation and genomic instability.
Mechanism of controlling autophagy by liquid-liquid phase separation revealed
Japanese scientists elucidated characteristics of PAS through observing the Atg protein using a fluorescence microscope and successfully reconstituted PAS in vitro.
New membranes for cellular recycling
Cells produce the shell of the autophagosomes on the spot.
West Nile virus triggers brain inflammation by inhibiting protein degradation
West Nile virus (WNV) inhibits autophagy -- an essential system that digests or removes cellular constituents such as proteins -- to induce the aggregation of proteins in infected cells, triggering cell death and brain inflammation (encephalitis), according to Hokkaido University researchers.
The molecule that can AUTAC bad proteins
Tohoku University researchers have developed a strategy that could help cells get rid of disease-related debris.
Clearing damaged cells out of the body helps heal diabetics' blood vessels
Research published today in Experimental Physiology shows that ramping up one of the body's waste disposal system, called autophagy, helps heal the blood vessels of diabetics.
How the cellular recycling system is put on hold while cells divide
Research involving several teams at the Babraham Institute, Cambridge, UK, has shown that cellular recycling (autophagy) is repressed during the process of cell division, and how repression of autophagy during mitosis utilises a different master regulator.
Insight into cells' 'self-eating' process could pave the way for new dementia treatments
Cells regularly go through a process called autophagy -- literally translated as 'self-eating' -- which helps to destroy bacteria and viruses after infection.
Deregulated mTOR is responsible for autophagy defects exacerbating kidney stone formation
Kidney stone disease is a lifestyle-related disease prevalent; however, effective medical treatment for the disease is not yet well established.
More Autophagy News and Autophagy Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Uncharted
There's so much we've yet to explore–from outer space to the deep ocean to our own brains. This hour, Manoush goes on a journey through those uncharted places, led by TED Science Curator David Biello.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 2: Every Day is Ignaz Semmelweis Day
It began with a tweet: "EVERY DAY IS IGNAZ SEMMELWEIS DAY." Carl Zimmer – tweet author, acclaimed science writer and friend of the show – tells the story of a mysterious, deadly illness that struck 19th century Vienna, and the ill-fated hero who uncovered its cure ... and gave us our best weapon (so far) against the current global pandemic. This episode was reported and produced with help from Bethel Habte and Latif Nasser. Support Radiolab today at Radiolab.org/donate.