McGill team offers new hopes in cures for Parkinson's disease, schizophrenia, depression, drug addiction and severe pain

April 06, 2000

Dopamine and somatostatin are two major neurotransmitter systems that share a number of structural and functional characteristics. Dopamine plays a crucial role in a variety of diseases such as Parkinson's disease, schizophrenia and depression, and somatostatin is involved in modulating many of the actions of dopamine such as dopamine-mediated control of motor activity. Receptors for dopamine and somatostatin are frequently located on the surface of the same neuron, thus providing grounds for believing that there is a physiologically relevant interaction between the two systems, both normally and in diseases such as Parkinson's disease, schizophrenia and depression. However, the molecular basis for such interaction is unclear.

In the April 7, 2000 issue of Science, a team of scientists led by Dr. Yogesh Patel, Director of the Division of Endocrinology at the Royal Victoria Hospital and Professor in the McGill Departments of Medicine, Pharmacology and Therapeutics, Neurology and Neurosurgery, shows how this direct intra-membrane association works.

"Many hormones and neurotransmitters regulate cell function by activating surface receptors that belong to a class of proteins known as G protein-coupled receptors (GPCRs) of which there are an estimated 1000 or more in the body," explains Dr. Patel. " In general, GPCRs have been thought to function as single molecules or monomers to which a hormone binds. We have discovered that when a GPCR is activated by its ligand (i.e. its specific hormone or transmitter) it may join physically with another GPCR belonging to a different receptor family to form a hetero-oligomer, a novel receptor whose properties are distinct from that of the two separate receptors."

In Science, Dr.Patel and his team describe an oligomer of dopamine and somatostatin receptors which can be activated to a certain level by either somatostatin or dopamine but which produces a synergistic response when the two ligands are applied simultaneously. "When the complex is exposed to a dopamine antagonist, signaling from both receptors is inhibited," says Dr. Patel. " It is suspected that there are many undiscovered novel receptors like these in the brain and elsewhere in the body made up of hetero-oligomers whose properties are different from those of individual monomers."

"Now," says Dr. Patel," because of the belief that GPCRs are monomers, our current drugs are aimed at monomers, but if we could design future drugs targeted at any of a number of potential hetero-oligomeric receptor combinations such as dopamine and somatostatin receptors, somatostatin and opioid receptors, dopamine and opioid receptors, we could open the door to new drug treatments for many disorders such as Parkinson's disease, schizophrenia, depression, drug addiction, and severe pain."
-end-


McGill University

Related Depression Articles from Brightsurf:

Children with social anxiety, maternal history of depression more likely to develop depression
Although researchers have known for decades that depression runs in families, new research from Binghamton University, State University of New York, suggests that children suffering from social anxiety may be at particular risk for depression in the future.

Depression and use of marijuana among US adults
This study examined the association of depression with cannabis use among US adults and the trends for this association from 2005 to 2016.

Maternal depression increases odds of depression in offspring, study shows
Depression in mothers during and after pregnancy increased the odds of depression in offspring during adolescence and adulthood by 70%.

Targeting depression: Researchers ID symptom-specific targets for treatment of depression
For the first time, physician-scientists at Beth Israel Deaconess Medical Center have identified two clusters of depressive symptoms that responded to two distinct neuroanatomical treatment targets in patients who underwent transcranial magnetic brain stimulation (TMS) for treatment of depression.

A biological mechanism for depression
Researchers report that in depressed individuals there are increased amounts of an unmodified structural protein, called tubulin, in lipid rafts compared with non-depressed individuals.

Depression in adults who are overweight or obese
In an analysis of primary care records of 519,513 UK adults who were overweight or obese between 2000-2016 and followed up until 2019, the incidence of new cases of depression was 92 per 10,000 people per year.

Why stress doesn't always cause depression
Rats susceptible to anhedonia, a core symptom of depression, possess more serotonin neurons after being exposed to chronic stress, but the effect can be reversed through amygdala activation, according to new research in JNeurosci.

Which comes first: Smartphone dependency or depression?
New research suggests a person's reliance on his or her smartphone predicts greater loneliness and depressive symptoms, as opposed to the other way around.

Depression breakthrough
Major depressive disorder -- referred to colloquially as the 'black dog' -- has been identified as a genetic cause for 20 distinct diseases, providing vital information to help detect and manage high rates of physical illnesses in people diagnosed with depression.

CPAP provides relief from depression
Researchers have found that continuous positive airway pressure (CPAP) treatment of obstructive sleep apnea (OSA) can improve depression symptoms in patients suffering from cardiovascular diseases.

Read More: Depression News and Depression Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.