Current methods cannot predict damage to coral reefs

April 06, 2016

The potentially devastating effects of ocean acidification on coral reefs are well reported. However, the methods used to evaluate the potential harm are often focused on individual species, viewed in isolation. According to an international research team led by Peter J. Edmunds of California State University, Northridge, this simplistic approach neglects broad-scale inter-species and inter-population dynamics that may have unforeseen consequences for ecosystems.

"Most studies address the effects of ocean acidification on single species of corals and calcified algae in tanks," write the team members in an article for the journal BioScience. This approach, they argue, will be inadequate for evaluating the emergent properties of acidification-afflicted reef ecosystems. Answering the wider question of whether reefs will grow or dissolve "requires a consideration of scaling effects."

Differences across scales--from organisms to populations, to communities and ecosystems--have "particularly strong implications for coral reefs," say the authors. At the narrow scale, species-specific responses to acidification are highly variable, a result of corals' varied protective tissue layers, differing skeletal solubilities, and numerous other factors. Such differences have far-reaching implications at broader scales. For instance, differently responding symbiotic genotypes (zooxanthellae) could have major effects on a reef's community structure--and, ultimately, on the health of the reef as a whole.

To address these neglected dynamics, the authors propose an approach that combines empirical evidence with traditional biological scaling models and computer simulations to achieve a broader understanding of acidification effects. Only by synthesizing theory and existing empirical practices, they say, will it be possible to ascertain "how the population-level impacts of ocean acidification sum to community- and ecosystem-level impacts."

Despite the promise of their work, the authors caution that "we should not expect a 'grand unifying theory' of the effects of ocean acidification on coral reefs to emerge." Rather, they report that the best hope for unraveling the complex web of ocean acidification effects lies in the deployment of a diverse "suite of complementary modeling approaches."

Peter J. Edmunds will appear on the podcast BioScience Talks on 11 May 2016.
-end-
BioScience, published monthly by Oxford Journals, is the journal of the American Institute of Biological Sciences (AIBS). BioScience is a forum for integrating the life sciences that publishes commentary and peer-reviewed articles. The journal has been published since 1964. AIBS is a meta-level organization for professional scientific societies and organizations that are involved with biology. It represents nearly 160 member societies and organizations. Follow BioScience on Twitter @BioScienceAIBS.

Oxford Journals is a division of Oxford University Press. Oxford Journals publishes well over 300 academic and research journals covering a broad range of subject areas, two-thirds of which are published in collaboration with learned societies and other international organizations. The division been publishing journals for more than a century, and as part of the world's oldest and largest university press, has more than 500 years of publishing expertise behind it. Follow Oxford Journals on Twitter @OxfordJournals

American Institute of Biological Sciences

Related Coral Reefs Articles from Brightsurf:

The cement for coral reefs
Coral reefs are hotspots of biodiversity. As they can withstand heavy storms, they offer many species a safe home.

Palau's coral reefs: a jewel of the ocean
The latest report from the Living Oceans Foundation finds Palau's reefs had the highest coral cover observed on the Global Reef Expedition--the largest coral reef survey and mapping expedition in history.

Shedding light on coral reefs
New research published in the journal Coral Reefs generates the largest characterization of coral reef spectral data to date.

Uncovering the hidden life of 'dead' coral reefs
'Dead' coral rubble can support more animals than live coral, according to University of Queensland researchers trialling a high-tech sampling method.

Collaboration is key to rebuilding coral reefs
The most successful and cost-effective ways to restore coral reefs have been identified by an international group of scientists, after analyzing restoration projects in Latin America.

Coral reefs show resilience to rising temperatures
Rising ocean temperatures have devastated coral reefs all over the world, but a recent study in Global Change Biology has found that reefs in the Eastern Tropical Pacific region may prove to be an exception.

Genetics could help protect coral reefs from global warming
The research provides more evidence that genetic-sequencing can reveal evolutionary differences in reef-building corals that one day could help scientists identify which strains could adapt to warmer seas.

Tackling coral reefs' thorny problem
Researchers from the Okinawa Institute of Science and Technology Graduate University (OIST) have revealed the evolutionary history of the crown-of-thorns starfish -- a predator of coral that can devastate coral reefs.

The state of coral reefs in the Solomon Islands
The ''Global Reef Expedition: Solomon Islands Final Report'' summarizes the foundation's findings from a monumental research mission to study corals and reef fish in the Solomon Islands and provides recommendations on how to preserve these precious ecosystems into the future.

Mysterious glowing coral reefs are fighting to recover
A new study by the University of Southampton has revealed why some corals exhibit a dazzling colorful display, instead of turning white, when they suffer 'coral bleaching' -- a condition which can devastate reefs and is caused by ocean warming.

Read More: Coral Reefs News and Coral Reefs Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.