Nav: Home

Inflammation: It takes two to tango

April 06, 2017

Signal molecules called chemokines often work in tandem to recruit specific sets of immune cells to sites of tissue damage. A systematic analysis of their interactions by researchers from Ludwig-Maximilians-Universitaet (LMU) in Munich pinpoints potential targets for new therapies.

Chemokines are small signal proteins that are secreted by their producer cells, and function as attractants for specific cell types, summoning them to sites in the body where they are needed. Most of these proteins act on cells of the immune system, and recruit them to sites of injury or infection. The cells reach their targets by following the rise in the concentration of the chemokine back to its cellular source in the tissues, a process known as chemotaxis. Hence, chemokines are involved in initiating and regulating inflammation reactions, which are triggered by acute tissue damage or metabolic imbalances. For example, chemokines are intimately involved in the pathogenesis of atherosclerosis, i.e. the localized infiltration with lipid-laden macrophages and deposition of fat-rich debris which can obstruct the flow of blood through major arteries. For these 'plaques' are themselves the product of chronic inflammation reactions. In a paper that has just appeared in the journal Science Translational Medicine, researchers led by LMU's Professor Christian Weber and Dr. Philipp von Hundelshausen now report the results of the first ever systematic survey of direct interactions between individual chemokines and characterized their biological effects.

Different chemokines are capable of binding to each other to form so-called heterodimers, i.e. functional units consisting of two distinct subunits, and such interactions may either potentiate or attenuate their function. This makes heterodimers interesting as drug targets for novel therapies for the treatment of acute and chronic inflammation. "Up to now, however, only one heterodimer had been sufficiently well characterized to allow it to be targeted by synthetic peptides in the context of a therapeutic intervention. In that case, the heterodimer exacerbates the recruitment of monocytes that stimulate atherosclerosis to sites of inflammation in the blood vessel wall," Weber explains.

Weber and his collaborators have now, for the first time, systematically screened all pairwise combinations of the 50 or so known chemokines for their ability to form heterodimers, and identified those interactions that are functionally relevant and potentially targetable for therapeutic purposes. Using an array of analytical methods to probe structure-function relationships and a set of transgenic mouse strains as experimental models, the researchers found that chemokines that are secreted in the course of inflammatory reactions are particularly prone to heterodimerize with each other. Furthermore, the team was able to show that these binding interactions can be classified into two structural types, which are referred to as CC and CXC dimers. "Our results also demonstrate that these two subtypes differ functionally: Heterodimers of the CC class have a more potent chemoattractant effect, and in mouse models they promote acute inflammation of the lung and atherosclerosis. Dimers of the CXC type, on the other hand, repress chemotaxis. So the formation of chemokine heterodimers enables the organism to fine-tune the overall level of chemokine activity," von Hundelshausen says.

"In the course of our study, we were able to demonstrate that specially designed synthetic peptides selectively inhibit the ability of CC heterodimers to promote the development of atherosclerosis and acute inflammation of the lung, or mimic the capacity of CXC heterodimers to inhibit platelet aggregation, thus limiting the risk of thrombosis", Weber says. Appropriately designed peptides could therefore serve as the basis for the creation of new anti-inflammatory and anti-platelet compounds without side effects.

Ludwig-Maximilians-Universität München

Related Atherosclerosis Articles:

Scaling up a nanoimmunotherapy for atherosclerosis through preclinical testing
By integrating translational imaging techniques with improvements to production methods, Tina Binderup and colleagues have scaled up a promising nanoimmunotherapy for atherosclerosis in mice, rabbits and pigs -- surmounting a major obstacle in nanomedicine.
Bladder drug linked to atherosclerosis in mice
A drug used in the treatment of overactive bladder can accelerate atheroclerosis in mice, researchers at Karolinska Institutet in Sweden report in a study published in the Proceedings of the National Academy of Sciences (PNAS).
Atherosclerosis: Induced cell death destabilizes plaques
Many chronic disorders arise from misdirected immune responses. A Ludwig-Maximilians-Universitaet (LMU) in Munich team led by Oliver Söhnlein now shows that neutrophils exacerbate atherosclerosis by inducing smooth muscle-cell death and that a tailored peptide inhibits the process.
A new therapeutic target for blocking early atherosclerosis in progeria
Researchers at the Centro Nacional de Investigaciones Cardiovasculares and the Universidad de Oviedo have discovered a new molecular mechanism involved in the premature development of atherosclerosis in mice with Hutchinson-Gilford progeria syndrome.
Protective mechanism against atherosclerosis discovered
Immune cells promoting inflammation play a crucial role in the development of atherosclerosis.
Atherosclerosis: Stopped on time
For the first time, LMU researchers are pointing out the influence of the internal clock on atherosclerosis.
New actors identified in atherosclerosis
Stroke and heart attack are the leading cause of death in the Western world.
Running multiple marathons does not increase risk of atherosclerosis
Running multiple marathons does not increase the risk of atherosclerosis, according to research published today in the European Journal of Preventive Cardiology.
Atherosclerosis: Endogenous peptide lowers cholesterol
Cells of the innate immune system that play an important role in development of atherosclerosis contain a protein that reduces levels of cholesterol in mice -- and thus helps to inhibit or mitigate the disease.
Activation of 2 genes linked to development of atherosclerosis
Researchers at Brigham and Women's Hospital have found two new potential drug targets for treating arterial diseases such as atherosclerosis.
More Atherosclerosis News and Atherosclerosis Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Accessing Better Health
Essential health care is a right, not a privilege ... or is it? This hour, TED speakers explore how we can give everyone access to a healthier way of life, despite who you are or where you live. Guests include physician Raj Panjabi, former NYC health commissioner Mary Bassett, researcher Michael Hendryx, and neuroscientist Rachel Wurzman.
Now Playing: Science for the People

#544 Prosperity Without Growth
The societies we live in are organised around growth, objects, and driving forward a constantly expanding economy as benchmarks of success and prosperity. But this growing consumption at all costs is at odds with our understanding of what our planet can support. How do we lower the environmental impact of economic activity? How do we redefine success and prosperity separate from GDP, which politicians and governments have focused on for decades? We speak with ecological economist Tim Jackson, Professor of Sustainable Development at the University of Surrey, Director of the Centre for the Understanding of Sustainable Propserity, and author of...
Now Playing: Radiolab

An Announcement from Radiolab