Nav: Home

Cognitive decline after surgery tied to brain's own immune cells

April 06, 2017

After undergoing surgery, elderly patients often experience cloudy thinking that can last for weeks or even months. At one time researchers thought this cognitive decline might be caused by anesthesia, but mounting evidence suggests that heightened inflammation in the brain following surgery is the more likely cause.

Now a new study in mice by UC San Francisco researchers suggests that brain inflammation and cognitive decline following surgery are triggered by the brain's own specialized immune cells, called microglia. Mice given an experimental oral drug that temporarily depletes microglia ahead of an operation were much less likely to fail memory tests several days after surgery, the UCSF team found, suggesting a possible new approach to preventing the condition in humans.

The study, published April 6 in JCI Insight, an online, open-access companion publication to the Journal of Clinical Investigation, was led by collaborators Suneil Koliwad, MD, PhD, assistant professor of medicine, and Mervyn Maze, MD, professor of anesthesia and perioperative care at UCSF. Koliwad has been studying microglia for several years, and Maze developed the mouse model that was used to investigate cognitive effects of surgery.

"There is an impact on memory in the mouse model that mirrors what has been observed in studies of post-surgical cognitive impairment in humans, and we can mitigate it with treatment that we think is not harmful to the animal," said Koliwad, who holds the Gerold Grodsky, PhD/JAB Chair in Diabetes Research at the UCSF Diabetes Center. "When we depleted microglia before surgery, the mice remembered much better after surgery in comparison to mice that did not receive the drug. Furthermore, we found much lower levels of inflammatory molecules in the hippocampus, a brain region that plays a key role in memory."

Excess Inflammation May Trigger Cognitive Decline After Surgery

Surgeries in elderly patients are becoming more common, and cognitive impairment is increasingly acknowledged by anesthesiologists to be a common side effect of surgery in these patients. A few studies in recent years have found that upwards of 10 percent of surgery patients ages 60 and older show some degree of cognitive impairment three months following surgery, although the diagnostic criteria for the condition have not yet been standardized, and causes and risk factors are still being explored.

Post-operative cognitive dysfunction was previously believed to be caused by deep anesthesia during surgery. But increasing evidence instead links the condition to an inflammatory reaction in the brain, now understood to be a normal response to tissue trauma occurring anywhere in the body -- even surgeries physically distant from the brain, such as hip replacement, may trigger this response. Studies have shown that when this inflammation is excessive or too persistent, as may be the case in the elderly, the normally protective response can negatively impact cognition.

"Previous studies on post-operative inflammation in the brain had focused on whether circulating immune cells invade the brain and contribute to cognitive decline," Koliwad said. "Based on our new research, we now know that the brain's own microglia initiate and orchestrate this response, including the infiltration of peripheral immune cells and the resultant memory loss."

Temporarily Eliminating Microglia During Surgery Prevents Cognitive Decline in Mice

In experiments led by UCSF postdoctoral fellows Xiaomei Feng, PhD, and Martin Valdearcos, PhD, the researchers examined how surgery impacted cognition in mice whose microglia were experimentally depleted. Normally, mice trained in a conditioned behavior task prior to surgery perform worse at remembering the task three days after the operation. Remarkably, when researchers gave 10 mice a drug treatment to deplete microglia levels to roughly five percent of normal for seven days before undergoing the surgery, the animals were completely protected against this form of cognitive decline.

"This work demonstrates the central importance of microglia as transducers of surgical trauma in the periphery," said Maze, who is also William K Hamilton Distinguished Professor of Anesthesia in the Department of Anesthesia and Perioperative Care at UCSF. "They dictate the downstream inflammatory and neurological consequences in the brain."

The experimental drug used in the study, PLX5622, is made by Plexxikon Inc., a Berkeley, Calif.-based biotech company, and targets a molecule called colony-stimulating factor 1 receptor (CSF1R), which microglia require in order to survive and replenish or expand their numbers.

Importantly, microglial depletion was not associated with reduced surgical wound healing, or with altered levels of immune cells and molecules outside the brain, and microglia levels returned to normal within two days after the PLX5622 treatment was stopped. However, in this study the UCSF researchers did not investigate potential long-term effects of microglia depletion more than one week past surgery.

"Our plan is to conduct more preclinical research to explore the potential of this approach, in the hopes that it eventually proves to be clinically applicable not only in surgery, but also in other diseases that lead to cognitive decline," Koliwad said.
-end-
The research was funded by grants to Koliwad and Maze from the National Institutes of Health (R01 DK103175-02, R01 GM104194). Yosuke Uchida, PhD, and David Lutrin of UCSF were also co-authors on the paper.

University of California - San Francisco

Related Memory Articles:

Taking photos of experiences boosts visual memory, impairs auditory memory
A quick glance at any social media platform will tell you that people love taking photos of their experiences -- whether they're lying on the beach, touring a museum, or just waiting in line at the grocery store.
Think you know how to improve your memory? Think again
Research from Katherine Duncan at the University of Toronto suggests we may have to rethink how we improve memory.
Improving memory with magnets
The ability to remember sounds, and manipulate them in our minds, is incredibly important to our daily lives -- without it we would not be able to understand a sentence, or do simple arithmetic.
Who has the better memory -- men or women?
In the battle of the sexes, women have long claimed that they can remember things better and longer than men can.
New study of the memory through optogenetics
A collaboration between Universitat Autònoma de Barcelona and Harvard University pioneers the increase of memory using optogenetics in mice in Spain.
Peppermint tea can help improve your memory
Peppermint tea can improve long-term and working memory and in healthy adults.
A new glimpse into working memory
MIT study finds bursts of neural activity as the brain holds information in mind, overturns a long-held model.
Memory ensembles
For over forty years, neuro-scientists have been interested in the biological mechanisms underlying the storage of the information that our brain records every day.
What is your memory style?
Why is it that some people have richly detailed recollection of past experiences (episodic memory), while others tend to remember just the facts without details (semantic memory)?
Watching a memory form
Neuroscientists at Rosalind Franklin University of Medicine and Science have discovered a novel mechanism for memory formation.

Related Memory Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Moving Forward
When the life you've built slips out of your grasp, you're often told it's best to move on. But is that true? Instead of forgetting the past, TED speakers describe how we can move forward with it. Guests include writers Nora McInerny and Suleika Jaouad, and human rights advocate Lindy Lou Isonhood.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...