Nav: Home

How a beneficial gut microbe adapted to breast milk

April 06, 2017

Breast milk provides vital nutrients not only to infants, but also to beneficial microbes that inhabit the gastrointestinal tract. A study published April 6 in Cell Chemical Biology shows that a bacterial species called Bifidobacterium longum has successfully adapted to the unique niche of the infant gut by producing an enzyme called LnbX, which enables this microbe to grow on a sugar that is abundant only in human milk.

"Given the health-promoting effects of bifidobacteria, our findings reveal a possible evolutionary route for the breast milk-driven symbiosis between gut microbes and humans," says co-senior study author Takane Katayama of Kyoto University.

Gut microbes in early life are thought to have long-lasting effects on human health, and studies have shown that diet strongly influences the composition of this population. For example, human milk sugars are known to selectively promote the growth of beneficial gut microbes such as bifidobacteria, which prevent diarrhea and pathogenic infection in infants. One major component of human milk is a sugar called lacto-N-tetraose, which is virtually absent in the milk of other mammals. Bifidobacteria produce enzymes that break down this sugar, strongly suggesting that a symbiotic relationship recently evolved between these microorganisms and humans.

While investigating how this symbiotic relationship evolved, Katayama and co-senior study author Shinya Fushinobu of the University of Tokyo previously characterized LnbB and isolated LnbX -- enzymes that degrade lacto-N-tetraose in Bifidobacterium bifidum and Bifidobacterium longum, respectively. In the new study, the researchers set out to build on these findings by determining the X-ray crystal structure of the catalytic domain of LnbX. The crystal structure, in combination with mutation and pharmacological experiments, revealed that LnbX has a distinct structure and catalytic mechanism from LnbB and therefore belongs to a novel family of glycoside hydrolase enzymes called GH136.

"Even though B. longum and B. bifidum belong to the same genus and inhabit the same environment, they use different enzymes to break down lacto-N-tetraose, taking advantage of the varied structures of this unique human milk sugar," Fushinobu says. "The findings suggest that different strains and species of beneficial bifidobacteria have independently evolved distinct molecular tools to digest the same human milk sugar, explaining their ability to co-exist and thrive in the gastrointestinal tract of breast milk-fed infants."

Additional experiments showed that the lnbX gene is critical for the ability of B. longum to grow specifically on lacto-N-tetraose. Moreover, an analysis of fecal DNA revealed that B. longum and the lnbX gene were more abundant in the gastrointestinal tract of ten infants that exclusively consumed breast milk compared with six infants fed a mixture of formula and breast milk. "Taken together, these findings suggest that lnbX is important for B. longum to persist in the gut ecosystem of breast milk-fed infants, and human milk sugars have been the main selective pressure for the evolution of lnbX," Katayama says.

In future studies, the researchers will investigate whether other bifidobacterial species produce different enzymes to digest breast milk sugars. They will also look for bifidobacterial metabolites that promote infant health. In the end, this research could improve formula milk through fortification either with beneficial bacterial compounds, or with microbial enzymes that have been manipulated to carry out the reverse reaction and synthesize human milk sugars at a low cost and large scale.

"Although breast feeding during the first year of life is recommended in most cases, some mothers have to rely on formula milk because they have viral infections or do not produce milk with key nutrients such as zinc," Katayama says. "Therefore, the development of new strategies to fortify formula milk with health-promoting ingredients will be especially critical in these rare cases where breast milk feeding is not possible."
-end-
This work was supported by the Science and Technology Research Promotion Program for Agriculture, Forestry, Fisheries and Food Industry, JSPS-KAKENHI, a Grant-in-Aid for JSPS Research Fellows, the Institution for Fermentation, Osaka, Japan, and in part by the Platform for Drug Discovery, Informatics, and Structural Life Science funded by MEXT.

Cell Chemical Biology, Yamada and Gotoh et al.: "Molecular insight into evolution of symbiosis between breast-fed infants and a member of the human gut microbiome Bifidobacterium longum" http://www.cell.com/cell-chemical-biology/fulltext/S2451-9456(17)30095-8

Cell Chemical Biology (@CellChemBiol), published by Cell Press, is a monthly journal publishing research and review content of exceptional interest for the chemical biology community. The journal's mission is to support and promote chemical biology and drive conversation and collaboration between chemical and life sciences. Visit: http://www.cell.com/chemistry-biology. To receive Cell Press media alerts, contact press@cell.com.

Cell Press

Related Breast Milk Articles:

Breast milk appears to aid white matter microstructural organization in preemies
To the growing list of reasons why mothers should consider breast-feeding infants, add another: Critical white matter structures in the brains of babies who are born so prematurely that they weigh less than 1,500 grams develop more robustly when their mothers breast-feed them, compared with preemie peers who are fed formula.
How a beneficial gut microbe adapted to breast milk
Breast milk provides vital nutrients not only to infants, but also to beneficial microbes that inhabit the gastrointestinal tract.
From mother to baby: 'Secondhand sugars' can pass through breast milk
Add breast milk to the list of foods and beverages that contain fructose, a sweetener linked to health issues ranging from obesity to diabetes.
Concentrating milk at the farm does not harm milk quality
Together with Arla Foods, Aarhus University has examined several aspects of concentrating the milk at the farm.
Study looks at how changes in maternal diet impact human milk oligosaccharides and the milk microbiome
In a study to be presented Thursday, Jan. 26, in the oral plenary session at 1:15 p.m.
Testing breast milk for cannabinoids
With the legalization of medical and recreational marijuana spreading across the country, the drug's use is reportedly increasing among pregnant women.
Breast milk protein safely reduces hospital infections in preemies
Responding to a call from the American Academy of Pediatrics to reduce hospital-acquired infections in neonatal intensive care units across the country, researchers from the University of Missouri School of Medicine and Sinclair School of Nursing have found a protein in breast milk to be a safe and efficient solution.
Breast milk sugar may protect babies against deadly infection
A type of sugar found naturally in some women's breast milk may protect newborn babies from infection with a potentially life threatening bacterium called Group B streptococcus, according to a new study from Imperial College London.
New method opens up the possibility of customizing breast milk for premature children
There is a difference between breast milk from women who give birth prematurely and from women who give birth to full-term babies.
Protein in breast milk reduces infection risk in premature infants
Full-term babies receive natural protection from their mothers that helps them fight off dangerous infections.

Related Breast Milk Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".