Nav: Home

Turning skin cells into blood vessel cells while keeping them young

April 06, 2017

Researchers from the University of Illinois at Chicago have identified a molecular switch that converts skin cells into cells that make up blood vessels, which could ultimately be used to repair damaged vessels in patients with heart disease or to engineer new vasculature in the lab. The technique, which boosts levels of an enzyme that keeps cells young, may also circumvent the usual aging that cells undergo during the culturing process. Their findings are reported in the journal Circulation.

Scientists have many ways to convert one type of cell into another. One technique involves turning a mature cell into a "pluripotent" stem cell -- one that has the ability to become any type of cell -- and then using chemical cocktails to coax it into maturing into the desired cell type. Other methods reprogram a cell so that it directly assumes a new identity, bypassing the stem-cell state.

In the last few years, scientists have begun to explore another method, a middle way, that can turn back the clock on skin cells so that they lose some of their mature cell identity and become more stem-like.

"They don't revert all the way back to a pluripotent stem cell, but instead turn into intermediate progenitor cells," says Dr. Jalees Rehman, associate professor of medicine and pharmacology at UIC, who led the team of researchers. Progenitor cells can be grown in large quantities sufficient for regenerative therapies. And unlike pluripotent stem cells, progenitor cells can only differentiate into a few different cell types. Rehman calls this method to produce new cells "partial de-differentiation."

Other groups have used this technique to produce progenitor cells that become blood vessel cells. But until now, researchers had not fully understood how the method worked, Rehman said.

"Without understanding the molecular processes, it is difficult for us to control or enhance the process in order to efficiently build new blood vessels," he said.

His group discovered that the progenitors could be converted into blood vessel cells or into red blood cells, depending on the level of a gene transcription factor called SOX17.

The researchers measured the levels of several genes important for blood vessel formation. They saw that as progenitor cells were differentiating into blood vessel cells, levels of the transcription factor SOX17 became elevated.

When they increased levels of SOX17 even more in the progenitor cells, they saw that differentiation into blood vessel cells was enhanced about five-fold. When they suppressed SOX17, the progenitor cells produced fewer endothelial cells and instead generated red blood cells.

"It makes a lot of sense that SOX17 is involved because it is abundant in developing embryos when blood vessels are forming," Rehman said.

When the researchers embedded the human progenitor cells into a gel and implanted the gels in mice, the cells organized into functional human blood vessels. Skin cells that had not undergone a conversion did not form blood vessels when similarly implanted.

When they implanted the progenitor cells into mice that had sustained heart damage from a heart attack, the implanted cells formed functional human blood vessels in the mouse hearts -- and even connected with existing mouse blood vessels to significantly improve heart function.

The human adult skin cells used by Rehman's team can easily be obtained by a simple skin biopsy.

"This means that one could generate patient-specific blood vessels or red blood cells for any individual person," Rehman said. Using such personalized cells reduces the risk of rejection, he said, because the implanted blood vessels would have the same genetic makeup as the recipient.

Rehman and his colleagues noticed something else about the progenitor cells - they had elevated levels of telomerase - the "anti-aging" enzyme that adds a cap, or telomere, to the ends of chromosomes. As the caps wear away a little bit each time a cell divides, they are believed to contribute to aging in cells, whether in the body or growing in culture in the laboratory.

"The increase in telomerase we see in the progenitor cells could be an added benefit of using this partial de-differentiation technique for the production of new blood vessels for patients with cardiac disease, especially for older patients," Rehman said. "Their cells may already have shortened telomeres due to their advanced age. The process of converting and expanding these cells in the lab could make them age even further and impair their long-term function. But if the cells have elevated levels of telomerase, the cells are at lower risk of premature aging."

While telomerase has benefits, the enzyme is also found in extremely high levels in cancer cells, where it keeps cell division in overdrive.

"We were concerned about the risk of tumor formation," Rehman said, but the researchers didn't observe any in these experiments. "But to truly determine the efficacy and safety of these cells for humans, one needs to study them over even longer time periods in larger animals."
-end-
Dr. Lianghui Zhang, Ankit Jambusaria, Dr. Zhigang Hong, Glenn Marsboom, Peter Toth and Asrar Malik of the UIC College of Medicine, and Brittney-Shea Herbert of the Indiana University School of Medicine are co-authors on the paper.

This research was supported in part by the National Institutes of Health Grants R01 GM094220, R01 HL118068, T32 HL007829 and R01 HL090152.

University of Illinois at Chicago

Related Heart Disease Articles:

Where you live could determine risk of heart attack, stroke or dying of heart disease
People living in parts of Ontario with better access to preventive health care had lower rates of cardiac events compared to residents of regions with less access, found a new study published in CMAJ (Canadian Medical Association Journal).
Older adults with heart disease can become more independent and heart healthy with physical activity
Improving physical function among older adults with heart disease helps heart health and even the oldest have a better quality of life and greater independence.
Dietary factors associated with substantial proportion of deaths from heart disease, stroke, and disease
Nearly half of all deaths due to heart disease, stroke, and type 2 diabetes in the US in 2012 were associated with suboptimal consumption of certain dietary factors, according to a study appearing in the March 7 issue of JAMA.
Certain heart fat associated with higher risk of heart disease in postmenopausal women
For the first time, researchers have pinpointed a type of heart fat, linked it to a risk factor for heart disease and shown that menopausal status and estrogen levels are critical modifying factors of its associated risk in women.
Maternal chronic disease linked to higher rates of congenital heart disease in babies
Pregnant women with congenital heart defects or type 2 diabetes have a higher risk of giving birth to babies with severe congenital heart disease and should be monitored closely in the prenatal period, according to a study published in CMAJ.
Novel heart valve replacement offers hope for thousands with rheumatic heart disease
A novel heart valve replacement method is revealed today that offers hope for the thousands of patients with rheumatic heart disease who need the procedure each year.
Younger heart attack survivors may face premature heart disease death
For patients age 50 and younger, the risk of premature death after a heart attack has dropped significantly, but their risk is still almost twice as high when compared to the general population, largely due to heart disease and other smoking-related diseases The risk of heart attack can be greatly reduced by quitting smoking, exercising and following a healthy diet.
Citrus fruits could help prevent obesity-related heart disease, liver disease, diabetes
Oranges and other citrus fruits are good for you -- they contain plenty of vitamins and substances, such as antioxidants, that can help keep you healthy.
Gallstone disease may increase heart disease risk
A history of gallstone disease was linked to a 23 percent increased risk of developing coronary heart disease.
Americans are getting heart-healthier: Coronary heart disease decreasing in the US
Coronary heart disease is one of the leading causes of death in the United States.

Related Heart Disease Reading:

Braunwald's Heart Disease: A Textbook of Cardiovascular Medicine, 2-Volume Set
by Douglas P. Zipes MD (Author), Peter Libby MD PhD (Author), Robert O. Bonow MD MS (Author), Douglas L. Mann MD (Author), Gordon F. Tomaselli MD (Author)

Prevent and Reverse Heart Disease: The Revolutionary, Scientifically Proven, Nutrition-Based Cure
by Caldwell B. Esselstyn Jr. (Author)

Pathophysiology of Heart Disease: A Collaborative Project of Medical Students and Faculty
by Leonard S. Lilly MD (Author)

The Prevent and Reverse Heart Disease Cookbook: Over 125 Delicious, Life-Changing, Plant-Based Recipes
by Ann Crile Esselstyn (Author), Jane Esselstyn (Author)

The End of Heart Disease: The Eat to Live Plan to Prevent and Reverse Heart Disease
by Joel Fuhrman M.D. (Author)

Illustrated Field Guide to Congenital Heart Disease and Repair - Pocket Sized
by Allen D. Everett (Author), D. Scott, M.D. Lim (Author), Paul Burns (Illustrator), Jasper Burns (Illustrator), Marcia L. Buck (Illustrator), Jane E., M.D. Crosson (Illustrator)

Critical Heart Disease in Infants and Children
by Ross M. Ungerleider MD (Author), Kristen Nelson (Author), David S Cooper (Author), Jon Meliones (Author), Jeffrey Jacobs (Author)

Braunwald's Heart Disease: A Textbook of Cardiovascular Medicine, Single Volume
by Douglas P. Zipes MD (Author), Peter Libby MD PhD (Author), Robert O. Bonow MD MS (Author), Douglas L. Mann MD (Author), Gordon F. Tomaselli MD (Author)

The Simple Heart Cure: The 90-Day Program to Stop and Reverse Heart Disease
by Chauncey Crandall (Author)

Moss & Adams’ Heart Disease in Infants, Children, and Adolescents, Including the Fetus and Young Adult (2 Volume Set)
by Hugh D. Allen MD FACC FAAP FAHA (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Circular
We're told if the economy is growing, and if we keep producing, that's a good thing. But at what cost? This hour, TED speakers explore circular systems that regenerate and re-use what we already have. Guests include economist Kate Raworth, environmental activist Tristram Stuart, landscape architect Kate Orff, entrepreneur David Katz, and graphic designer Jessi Arrington.
Now Playing: Science for the People

#504 The Art of Logic
How can mathematics help us have better arguments? This week we spend the hour with "The Art of Logic in an Illogical World" author, mathematician Eugenia Cheng, as she makes her case that the logic of mathematics can combine with emotional resonance to allow us to have better debates and arguments. Along the way we learn a lot about rigorous logic using arguments you're probably having every day, while also learning a lot about our own underlying beliefs and assumptions.