Nav: Home

Mount Sinai study reveals how learning in the present shapes future learning

April 06, 2017

Neurons in the prefrontal cortex "teach" neurons in the hippocampus to "learn" rules that distinguish memory-based predictions in otherwise identical situations, suggesting that learning in the present helps guide learning in the future, according to research conducted at the Icahn School of Medicine at Mount Sinai and published April 5 in the journal Neuron.

The study, led by Matthew Shapiro, PhD, Professor of Neuroscience at the Icahn School of Medicine at Mount Sinai, investigated memory flexibility and interference, the mechanisms by which the brain interprets events and anticipates their likely outcomes. The hippocampus is a temporal lobe brain structure needed for remembering recent events: for example, where you ate your last meal. The prefrontal cortex is where the brain uses context to switch flexibility between remembered rules, such as knowing to look left before crossing a street in North America but right before crossing in Britain. Without such rules, memories interfere with one another and predictions based on memory are inaccurate.

High-functioning individuals rapidly integrate memories with goals to choose their course of action. This cognitive flexibility requires interaction between the prefrontal cortex and hippocampus. Previous research indicates that interactions between these two brain regions are disrupted in many neuropsychiatric conditions, including schizophrenia, depression, and attention deficit disorder, but the mechanisms of these interactions have largely remained a mystery.

"We want to understand how our brains learn to think ahead and the mechanisms that use context to recall events, predict outcomes and inform decisions. For example, how does the brain know to answer a ringing telephone at home but not in someone else's house? " says Dr. Shapiro. "We found that 'rules' signaled by the medial prefrontal cortex 'teach' the hippocampus to distinguish goals, as rats learned to switch from one goal to another. We already knew that hippocampal cells predicted memory decisions through prospective coding, firing at different rates before rats chose different goals. We learned that inactivating the prefrontal cortex reduced prospective coding by the hippocampus. Furthermore, the more the prefrontal cortex altered hippocampal activity as rats learned one rule, the faster they switched to the next rule."

The research team tested spatial memory in rats using a plus-shaped maze in a task that depends on hippocampal function. The rats were trained to walk from the far end of a start arm (North or South) through a choice point to the end of one of two goal arms (West or East) to find hidden food. After the rat returned reliably to the rewarded spatial goal from each of the two start arms (e.g. "go East"), the opposite goal was rewarded and the animals had to learn a rule reversal (e.g. "go West"). The research team found that intact rats learned an initial goal and performed roughly three reversals each day, while rats with prefrontal cortex dysfunction learned only the initial goal; rats with hippocampal dysfunction learned none. This observation suggested that the prefrontal cortex might teach the hippocampus to differentiate goal-related memories.

To test this hypothesis, researchers placed micro-electrodes into both the prefrontal cortex and hippocampus and recorded the activity of ensembles of single neurons in both structures during learning and stable memory performance in the plus-shaped maze.

Because both brain regions were recorded simultaneously, the research team could test whether activity in one region changed before or at the same time as the other during different phases of learning and memory, as rats learned to approach one goal and switch to another.

"We found that neuronal activity was synchronized in the two structures, and that neurons in the prefrontal cortex modulated hippocampal place cell activity during learning," says Dr. Shapiro. "Prefrontal cortical and hippocampal cell activity predicted imminent choices, as though both structures were contributing to spatial memory retrieval."

They also found that the prefrontal cortex most strongly altered hippocampal place cell activity during reversals, just before a rat learned to reliably select a new goal. Moreover, the strength of the prefrontal modulation of hippocampal activity predicted how quickly the rats learned the next reversal. In other words, the more that the hippocampus "learned" what the prefrontal cortex "taught," the faster the rat learned the next rule.

Functional magnetic resonance imaging studies show how specific structures within the prefrontal cortex interact to use contextual information and modify emotional responses. These prefrontal dynamics are reduced in people suffering from depression and recover when depressive symptoms remit.

The new mechanisms uncovered by this study will likely improve our understanding of and inform new treatments for psychiatric conditions that involve hippocampal and prefrontal cortex interactions. Ongoing research is investigating whether the same mechanisms described in this study are at play between the hippocampus and other prefrontal structures.
-end-
About the Mount Sinai Health System

The Mount Sinai Health System is an integrated health system committed to providing distinguished care, conducting transformative research, and advancing biomedical education. Structured around seven member hospital campuses and a single medical school, the Health System has an extensive ambulatory network and a range of inpatient and outpatient services--from community?based facilities to tertiary and quaternary care.

The System includes approximately 6,600 primary and specialty care physicians, 12?minority?owned free?standing ambulatory surgery centers, over 45 ambulatory practices throughout the five boroughs of New York City, Westchester, and Long Island, as well as 31 affiliated community health centers. Physicians are affiliated with the Icahn School of Medicine at Mount Sinai, which is ranked among the top 20 medical schools both in National Institutes of Health funding and by U.S. News & World Report.

For more information, visit http://www.mountsinai.org, or find Mount Sinai on Facebook, Twitter and YouTube.

The Mount Sinai Hospital / Mount Sinai School of Medicine

Related Neurons Articles:

New tool to identify and control neurons
One of the big challenges in the Neuroscience field is to understand how connections and communications trigger our behavior.
Neurons that regenerate, neurons that die
In a new study published in Neuron, investigators report on a transcription factor that they have found that can help certain neurons regenerate, while simultaneously killing others.
How neurons use crowdsourcing to make decisions
When many individual neurons collect data, how do they reach a unanimous decision?
Neurons can learn temporal patterns
Individual neurons can learn not only single responses to a particular signal, but also a series of reactions at precisely timed intervals.
A turbo engine for tracing neurons
Putting a turbo engine into an old car gives it an entirely new life -- suddenly it can go further, faster.
Brain neurons help keep track of time
Turning the theory of how the human brain perceives time on its head, a novel analysis in mice reveals that dopamine neuron activity plays a key role in judgment of time, slowing down the internal clock.
During infancy, neurons are still finding their places
Researchers have identified a large population of previously unrecognized young neurons that migrate in the human brain during the first few months of life, contributing to the expansion of the frontal lobe, a region important for social behavior and executive function.
How many types of neurons are there in the brain?
For decades, scientists have struggled to develop a comprehensive census of cell types in the brain.
Molecular body guards for neurons
In the brain, patterns of neural activity are perfectly balanced.
Engineering researchers use laser to 'weld' neurons
University of Alberta researchers have developed a method of connecting neurons, using ultrashort laser pulses -- a breakthrough technique that opens the door to new medical research and treatment opportunities.

Related Neurons Reading:

The Neuron: Cell and Molecular Biology
by Irwin B. Levitan (Author), Leonard K. Kaczmarek (Author)

The Myth of Mirror Neurons: The Real Neuroscience of Communication and Cognition
by W. W. Norton & Company

The Neuron: Cell and Molecular Biology
by Irwin B. Levitan (Author), Leonard K. Kaczmarek (Author)

From Neuron to Brain (5th Ed)
by John G. Nicholls (Author), A. Robert Martin (Author), David A. Brown (Author), Mathew E. Diamond (Author), David A. Weisblat (Author), Paul A. Fuchs (Author)

From Photon to Neuron: Light, Imaging, Vision
by Philip Nelson (Author)

From Neurons to Neighborhoods : The Science of Early Childhood Development
by Committee on Integrating the Science of Early Childhood Development (Author), Youth, and Families Board on Children (Author), National Research Council (Author), Committee on Integrating the Science of Early Childhood Development (Author), Jack P. Shonkoff (Editor), Deborah A. Phillips (Editor)

The 7 Secrets of Neuron Leadership: What Top Military Commanders, Neuroscientists, and the Ancient Greeks Teach Us about Inspiring Teams
by W. Craig Reed (Author), Gordon R. England (Foreword)

Spiking Neuron Models: Single Neurons, Populations, Plasticity
by Wulfram Gerstner (Author)

Neuronal Dynamics: From Single Neurons To Networks And Models Of Cognition
by Wulfram Gerstner (Author)

Neurons & Neurotransmitters Wall Chart: 8271 (Physiology)
by Scientific Publishing (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Circular
We're told if the economy is growing, and if we keep producing, that's a good thing. But at what cost? This hour, TED speakers explore circular systems that regenerate and re-use what we already have. Guests include economist Kate Raworth, environmental activist Tristram Stuart, landscape architect Kate Orff, entrepreneur David Katz, and graphic designer Jessi Arrington.
Now Playing: Science for the People

#504 The Art of Logic
How can mathematics help us have better arguments? This week we spend the hour with "The Art of Logic in an Illogical World" author, mathematician Eugenia Cheng, as she makes her case that the logic of mathematics can combine with emotional resonance to allow us to have better debates and arguments. Along the way we learn a lot about rigorous logic using arguments you're probably having every day, while also learning a lot about our own underlying beliefs and assumptions.