Nav: Home

Cell biology: Dynamics of microtubules

April 06, 2018

Cells possess an internal skeleton, which enables them to alter their form and actively migrate. This 'cytoskeleton' is composed of a number of filament systems, of which microtubules are one. As the name suggests, a microtubule is a cylinder. Its wall is made up of 13 protofilaments, each consisting of heterodimeric subunits containing two related tubulin proteins. Microtubules not only confer mechanical stability on cells and help to dictate their forms, they also serve as an intracellular transport network. Furthermore, microtubules are the major constituents of the mitotic spindle, which mediates the orderly segregation of the replicated chromosome sets into the two daughter cells during cell division. All of these functions require dynamic regulation of microtubule lengths. A group of LMU physicists led by Professor Erwin Frey, in collaboration with Professor Stefan Diez (Technical University of Dresden and Max Planck Institute for Molecular Cell Biology and Genetics, Dresden), has now developed a model in which the motor proteins that are responsible for the transport of cargo along protofilaments also serve to regulate microtubule lengths. The model is described and experimentally validated in the journal Physical Review Letters.

In earlier work, Frey's group had shown that the density of molecular motors attached to the filaments has an impact on whether the microtubule grows or shrinks, and that their effect depends on the length of the filament concerned. The longer the microtubule, the greater the number of motor proteins it can accommodate. Motor molecules called kinesins proceed along the protofilament, stepping from one dimer to the next. When a kinesin protein reaches the end, it detaches from the filament taking the tubulin to which it is bound with it. Consequently, if the motor density on the protofilament is high, shrinkage will continue. On the other hand, a new tubulin dimer can bind to the end. At the end, motor-dependent shrinkage thus competes with microtubule growth. "Hence, assuming that resources (i.e. both tubulins and molecular motors) are present in access, there will be a filament length at which the rates of growth and shrinkage balance out," says Matthias Rank, first author of the study. However, in a real cell, these components are unlikely to be available in unlimited amounts. For example, formation of the mitotic spindle significantly depletes the numbers of free tubulin molecules in the soluble phase of the cytoplasm. In the new study, the researchers explored the effects of such resource limitation on the regulation of microtubule length.

Using simulations based on a mathematical model of polymer dynamics, they found that under these conditions two distinct mechanisms of length regulation come into play. Which of these becomes dominant depends on the relative concentrations of the tubulins and the motor proteins: In a certain concentration range the dynamic equilibrium between growth and shrinkage of the microtubules operates as it would if resources were not limiting. "But things are different when one of the required resources is in short supply", says Rank. "That is the case, for instance, when not enough motor molecules are available to trigger rapid depolymerization of the protofilaments." In this situation, the microtubules continue to grow until the concentration of tubulins falls below a critical value. Furthermore, there is a concentration range in which both processes are active. "In this case, we observe that the microtubules come in two sizes and that they sometimes switch between the two lengths", says Frey. "In physical terms, this can be described as a phase transition." In vitro experiments carried out by their co-author in Dresden have confirmed the existence of this transitional regime predicted by the Munich model. The team is convinced that their results are also applicable to other polymer systems, and they suspect that the limitation of key resources may play an important part in regulating other cellular processes.
-end-
Physical Review Letters 2018

Publication:

Limited Resources Induce Bistability in Microtubule Length Regulation

Matthias Rank, Aniruddha Mitra, Louis Reese, Stefan Diez and Erwin Frey

Physical Review Letters 2018

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.148101

Contact:

Prof. Dr. Erwin Frey
Statistical and Biological Physics, LMU Munich
Phone: +49 (0) 89 / 2180-4538
Email: erwin.frey@physik.lmu.de
Web: href="http://www.theorie.physik.uni-muenchen.de/lsfrey/members/group_leaders/erwin_frey/index.html">http://www.theorie.physik.uni-muenchen.de/lsfrey/members/group_leaders/erwin_frey/index.html

Ludwig-Maximilians-Universität München

Related Microtubules Articles:

Unbalanced microtubule networks launch establishment of neuronal polarity
Prof. MENG Wenxiang's group from the Institute of Genetics and Developmental Biology of the Chinese Academy of Sciences recently reported a new mechanism by which microtubule networks instruct neuronal polarity.
Biologists unravel tangled mystery of plant cell growth
When cells don't divide into proper copies of themselves, living things fail to grow as they should.
Cellular train track deformities shed light on neurological disease
A new technique allows researchers to test how the deformation of tiny train track-like cell proteins affects their function.
Parkinson's disease protein structure solved inside cells using novel technique
The top contributor to familial Parkinson's disease is mutations in leucine-rich repeat kinase 2 (LRRK2), whose large and difficult structure has finally been solved, paving the way for targeted therapies.
POSTECH developed self-assembled artificial microtubule like LEGO building blocks
Professor Kimoon Kim and his research team identified a new hierarchical self-assembly mechanism
How cells assemble their skeleton
Microtubules, filamentous structures within the cell, are required for many important processes, including cell division and intracellular transport.
Researchers unlock secrets of cell division, define role for protein elevated in cancer
Researchers at Princeton University have successfully recreated a key process involved in cell division in a test tube, uncovering the vital role played by a protein that is elevated in over 25% of all cancers.
Computer model described the dynamic instability of microtubules
Researchers of Sechenov University together with their colleagues from several Russian institutes studied the dynamics of microtubules that form the basis of the cytoskeleton and take part in the transfer of particles within a cell and its division.
A simple way to control swarming molecular machines
The swarming behavior of about 100 million molecular machines can be controlled by applying simple mechanical stimuli such as extension and contraction.
Cancer tumours form surprising connections with healthy brain cells
Anti-epileptic medicine can curb the dangerous communication and possibly be part of future treatment.
More Microtubules News and Microtubules Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.