How birds can detect the Earth's magnetic field

April 06, 2018

The receptors that sense the Earth's magnetic field are probably located in the birds' eyes. Now, researchers at Lund University have studied different proteins in the eyes of zebra finches and discovered that one of them differs from the others: only the Cry4 protein maintains a constant level throughout the day and in different lighting conditions.

Cry4 belongs to a group of proteins called cryptochromes. Normally they regulate the biological clock, but have also been considered significant for the magnetic sense. With this study, we now know which of the birds' cryptochromes do what.

"Cry4 is an ideal magnetoreceptor as the level of the protein in the eyes is constant. This is something we expect from a receptor that is used regardless of the time of day", explains Atticus Pinzón-Rodríguez, one of the researchers behind the study.

The conclusion is thus that this specific protein helps the magnetic sense to function, while other cryptochromes, whose levels in the body vary at different times of the day, take care of the biological clock instead.

Last year, Atticus Pinzón-Rodríguez and his colleagues noted that not only migratory birds navigate using a magnetic compass. Even resident birds that do not migrate in the spring and autumn have a magnetic sense and navigate using their internal magnetic compass. He now takes this one step further:

"This and last year's results indicate that other animals, perhaps all of them, have magnetic receptors and can pick up on magnetic fields."

A lot of research remains in order to map in detail how animals discover and use the Earth's magnetic field. What is clear is that it involves chemical reactions that interact with magnetic fields. According to Atticus Pinzón-Rodríguez, this knowledge may be of use when developing new navigation systems.
-end-


Lund University

Related Magnetic Field Articles from Brightsurf:

Investigating optical activity under an external magnetic field
A new study published in EPJ B by Chengping Yin, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China, aims to derive an analytical model of optical activity in black phosphorous under an external magnetic field.

Magnetic field and hydrogels could be used to grow new cartilage
Instead of using synthetic materials, Penn Medicine study shows magnets could be used to arrange cells to grow new tissues

Magnetic field with the edge!
This study overturns a dominant six-decade old notion that the giant magnetic field in a high intensity laser produced plasma evolves from the nanometre scale.

Global magnetic field of the solar corona measured for the first time
An international team led by Professor Tian Hui from Peking University has recently measured the global magnetic field of the solar corona for the first time.

Magnetic field of a spiral galaxy
A new image from the VLA dramatically reveals the extended magnetic field of a spiral galaxy seen edge-on from Earth.

How does Earth sustain its magnetic field?
Life as we know it could not exist without Earth's magnetic field and its ability to deflect dangerous ionizing particles.

Scholes finds novel magnetic field effect in diamagnetic molecules
The Princeton University Department of Chemistry publishes research this week proving that an applied magnetic field will interact with the electronic structure of weakly magnetic, or diamagnetic, molecules to induce a magnetic-field effect that, to their knowledge, has never before been documented.

Origins of Earth's magnetic field remain a mystery
The existence of a magnetic field beyond 3.5 billion years ago is still up for debate.

New research provides evidence of strong early magnetic field around Earth
New research from the University of Rochester provides evidence that the magnetic field that first formed around Earth was even stronger than scientists previously believed.

Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.

Read More: Magnetic Field News and Magnetic Field Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.