How will environmental changes affect western Greenland?

April 06, 2018

Thirty-one miles north of the Arctic Circle lies Kangerlussuaq, Greenland. It is one of the most studied regions in the Arctic. To highlight environmental change and impacts in the Kangerlussuaq area, Arctic, Antarctic, and Alpine Research (AAAR), has released a special issue, to examine how past, present and future climate impacts may affect this landscape.

Three of the 10 articles feature lead authors, who are alumni of the Integrative Graduate Education and Research Traineeship (IGERT) at Dartmouth-- the National Science Foundation's flagship interdisciplinary program for educating U.S. Ph.D. scientists and engineers, which has since been retired. From 2008 to 2015, Dartmouth's Institute of Arctic Studies hosted IGERT and had 25 graduate students participate in the program.

"Dartmouth's IGERT alumni represent a new generation of Arctic scientists who work across disciplines developing critical research on the Arctic from climate history to land erosion. I am proud of the quality of their scholarship, and their commitment to working collaboratively, a hallmark of the program," says Ross A. Virginia, director of the Institute of Arctic Studies and the Myers Family Professor of Environmental Science at Dartmouth; distinguished co-lead scholar of the Fulbright Arctic Initiative, 2017-19; and global fellow with the polar initiative at the Woodrow Wilson International Center for Scholars; who served as a co-author on the three papers.

Dartmouth IGERT alumni served as the lead authors of the following articles:

* Middle to late Holocene chronology of the southwestern margin of the Greenland Ice Sheet: a comparison with temperature records

Laura B. Levy, Meredith A. Kelly, Patrick A. Applegate, Jennifer A. Howley, and Ross A. Virginia.

The study explores the rates of ice margin fluctuations in response to climate changes during our current interglacial period (the Holocene; 10,000 years ago to present), which offers insight into how the ice sheet may respond to future climate changes. To do so, they conducted exposure dating of boulders and bedrock eroded by the ice sheet as it retreated. The findings include that ice retreat during the Holocene was likely influenced by warm summer temperatures and that "historical advances of the ice margin occured during the last 200 years, likely in response to cooling temperatures." Lead author Laura B. Levy, assistant professor of geology at Humbolt State University, is available for comment at: laura.levy@humboldt.edu.

* Pollen limitation and plant reproduction across a temperature gradient in western Greenland

Christine Urbanowicz, Ross A. Virginia and Rebecca E. Irwin.

To understand how climate change may affect pollination and plant reproduction, the study examines three plant species: bog blueberry (Vaccinium uliginosum), dwarf fireweed (Chamerion latifolium), and grayleaf willow (Salix glauca). For the study, the authors acted as pollinators to test the importance of cross pollination by comparing the fruiting success of flowers receiving extra pollen versus control flowers. Adding pollen usually increased fruit production, suggesting that lack of pollinators limited fruit production. They also found that pollinators were better able to keep up with bog blueberry's demand for pollen in warmer conditions, suggesting that as the climate becomes warmer, blueberry production may be greater due to increased pollination. Lead author Christine Urbanowicz, postdoctoral scientist in environmental conservation at the University of Massachusetts, is available for comment at: christine.urbanowicz@gmail.com.

* Quantifying rates of soil deflation with Structure-from-Motion photogrammetry in west Greenland

Ruth C. Heindel, Jonathan W. Chipman, James T. Dietrich and Ross A. Virginia.

The study examines 10 erosional landforms or deflation patches formed by strong winds blowing off the Greenland Ice Sheet. It employs Structure-from-Motion photogrammetry, to try and detect changes to these landforms between 2014 and 2016 by creating 3-D models of the landforms. The findings demonstrate that the landforms are actively eroding, which means that this area of Greenland is continuing to lose soil. This could impact vegetation, nutrient cycling and aquatic environments, as eroded soil is blown into lakes and the fjord. Lead author Ruth Heindel, postdoctoral scholar at the Institute of Arctic and Alpine Research at the University of Colorado at Boulder, is available for comment at: ruth.heindel@colorado.edu.

In addition, Ross Virginia is also available for comment on the papers, as well as on other topics affecting the Arctic, at: ross.a.virginia@dartmouth.edu.

Hi-res images from each of the papers are available and can be obtained from the respective lead author.
-end-


Dartmouth College

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.