Cold War nuclear bomb tests reveal true age of whale sharks

April 06, 2020

Atomic bomb tests conducted during the Cold War have helped scientists for the first time correctly determine the age of whale sharks.

The discovery, published in the journal Frontiers in Marine Science, will help ensure the survival of the species - the largest fish in the world - which is classified as endangered.

Measuring the age of whale sharks (Rhincodon typus) has been difficult because, like all sharks and rays, they lack bony structures called otoliths that are used to assess the age of other fish.

Whale shark vertebrae feature distinct bands - a little like the rings of a tree trunk - and it was known that these increased in number as the animal grew older. However, some studies suggested that a new ring was formed every year, while others concluded that it happened every six months.

To resolve the question, researchers led by researchers led by Joyce Ong from Rutgers University in New Jersey, USA, Steven Campana from the University of Iceland, and Mark Meekan from the Australian Institute of Marine Science in Perth, Western Australia, turned to the radioactive legacy of the Cold War's nuclear arms race.

During the 1950s and 1960s, the USA, Soviet Union, Great Britain, France and China conducted tests of nuclear weapons. Many of these were explosions detonated several kilometres in the air.

One powerful result of the blasts was the temporary atmospheric doubling of an isotope called carbon-14.

Carbon-14 is a naturally occurring radioactive element that is often used by archaeologists and historians to date ancient bones and artefacts. Its rate of decay is constant and easily measured, making it ideal for providing age estimates for anything over 300 years old.

However, it is also a by-product of nuclear explosions. Fallout from the Cold War tests saturated first the air, and then the oceans. The isotope gradually moved through food webs into every living thing on the planet, producing an elevated carbon-14 label, or signature, which still persists.

This additional radioisotope also decays at a steady rate - meaning that the amount contained in bone formed at one point in time will be slightly greater than that contained in otherwise identical bone formed more recently.

Using bomb radiocarbon data prepared by Steven Campana, Ong, Meekan, and colleagues set about testing the carbon-14 levels in the growth rings of two long-dead whale sharks stored in Pakistan and Taiwan. Measuring the radioisotope levels in successive growth rings allowed a clear determination of how often they were created - and thus the age of the animal.

"We found that one growth ring was definitely deposited every year," Dr Meekan said.

"This is very important, because if you over- or under-estimate growth rates you will inevitably end up with a management strategy that doesn't work, and you'll see the population crash."

One of the specimens was conclusively established as 50 years old at death - the first time such an age has been unambiguously verified.

"Earlier modelling studies have suggested that the largest whale sharks may live as long as 100 years," Dr Meekan said.

"However, although our understanding of the movements, behaviour, connectivity and distribution of whale sharks have improved dramatically over the last 10 years, basic life history traits such as age, longevity and mortality remain largely unknown.

"Our study shows that adult sharks can indeed attain great age and that long lifespans are probably a feature of the species. Now we have another piece of the jigsaw added."

Whale sharks are today protected across their global range and are regarded as a high-value species for eco-tourism. AIMS is the world's leading whale shark research body, and the animal is the marine emblem of Dr Meekan's home state, Western Australia.

Drs Ong, Meekan, and Campana were aided by Dr Hua Hsun Hsu from the King Fahd University of Petroleum and Minerals in Saudi Arabia, and Dr Paul Fanning from the Pakistan node of the UN Food and Agricultural Organisation.
-end-


Australian Institute of Marine Science

Related Nuclear Articles from Brightsurf:

Explosive nuclear astrophysics
An international team has made a key discovery related to 'presolar grains' found in some meteorites.

Nuclear medicine and COVID-19: New content from The Journal of Nuclear Medicine
In one of five new COVID-19-related articles and commentaries published in the June issue of The Journal of Nuclear Medicine, Johnese Spisso discusses how the UCLA Hospital System has dealt with the pandemic.

Going nuclear on the moon and Mars
It might sound like science fiction, but scientists are preparing to build colonies on the moon and, eventually, Mars.

Unused stockpiles of nuclear waste could be more useful than we might think
Chemists have found a new use for the waste product of nuclear power -- transforming an unused stockpile into a versatile compound which could be used to create valuable commodity chemicals as well as new energy sources.

Six degrees of nuclear separation
For the first time, Argonne scientists have printed 3D parts that pave the way to recycling up to 97 percent of the waste produced by nuclear reactors.

How to dismantle a nuclear bomb
MIT team successfully tests a new method for verification of weapons reduction.

Material for nuclear reactors to become harder
Scientists from NUST MISIS developed a unique composite material that can be used in harsh temperature conditions, such as those in nuclear reactors.

Nuclear physics -- probing a nuclear clock transition
Physicists have measured the energy associated with the decay of a metastable state of the thorium-229 nucleus.

Milestones on the way to the nuclear clock
For decades, people have been searching for suitable atomic nuclei for building an ultra-precise nuclear clock.

Nuclear winter would threaten nearly everyone on Earth
If the United States and Russia waged an all-out nuclear war, much of the land in the Northern Hemisphere would be below freezing in the summertime, with the growing season slashed by nearly 90 percent in some areas, according to a Rutgers-led study.

Read More: Nuclear News and Nuclear Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.