Magnetoacoustic waves: Towards a new paradigm of on-chip communication

April 06, 2020

Researchers have observed directly and for the first time magnetoacoustic waves (sound-driven spin waves), which are considered as potential information carriers for novel computation schemes. These waves have been generated and observed on hybrid magnetic/piezoelectric devices. The experiments were designed by a collaboration between the University of Barcelona (UB), the Institute of Materials Science of Barcelona (ICMAB-CSIC) and the ALBA Synchrotron. The results show that magnetoacoustic waves can travel over long distances -up to centimeters- and have larger amplitudes than expected.

The observation of the magnetization waves was performed in a Nickel ferromagnetic thin film, which was excited by a deformation wave (called surface acoustic wave, SAW) originated in a piezoelectric substrate layer below the Nickel film. Although clear interaction between acoustic waves and magnetization dynamics has been reported in several systems, thus far, no direct observation of the underlying magnetic excitations existed, providing a quantification of both time and space.

Now researchers have published in Physical Review Letters their findings: "We designed an experiment ad hoc to image and quantify the magnetization dynamics generated by surface acoustic waves (SAW). The results clearly show that magnetization waves exist at distinct frequencies and wavelengths and that it is possible to create wave interferences" explains Ferran Macià, leader of the project at the UB and ICMAB.

The experiments show interference patterns of magnetization waves and provides new avenues for manipulation of these waves at room temperature "Our magnetization waves are coupled to the acoustic waves and thus, can travel long distances and have larger amplitudes than spin waves" explains Michael Foerster, beamline scientist of CIRCE-PEEM at ALBA. Such large-amplitude, long-distance waves could be well-suited for carrying information, processing data, or driving small motors.

The generation of magnetization dynamics through acoustic waves has attracted interest because it has some advantages over magnetic field induced excitations, such as more energy efficiency, larger spatial extension, or match of wavelengths.

The experiments were performed using the PEEM (Photoemission Electron Microscopy) at the CIRCE beamline at the ALBA Synchrotron to image the magnetization waves, which were synchronized with the synchrotron light pulses. "As wave are dynamic objects, they were imaged with stroboscopic snapshots thanks to this synchronization. The X-ray magnetic circular dichroism (XMCD) effect was used to obtain magnetic contrast in the images" explains Macià.
-end-
The study, in collaboration with the Paul-Drude-Institut in Berlin, was in the framework of a Frontier Interdisciplinary Project (FIP) of the ICMAB Severo Ochoa grant. The FIPs are aimed to develop high-risk exploratory projects of interdisciplinary character to generate cutting-edge research in the application areas of energy, electronics or health.

University of Barcelona

Related Acoustic Waves Articles from Brightsurf:

Remembrance of waves past: memory imprints motion on scattered waves
Now, it appears that between relativity and the classical (stationary) wave regime, there exists another regime of wave phenomena, where memory influences the scattering process.

Scientists develop principles for the creation of an "acoustic diode"
In research published in Science Advances, a group led by scientists from the RIKEN Center for Emergent Matter Science (CEMS) have used a principle, ''magneto-rotation coupling,'' to suppress the transmission of sound waves on the surface of a film in one direction while allowing them to travel in the other.

Light, sound, action: Extending the life of acoustic waves on microchips
Data centres and digital information processors are reaching their capacity limits and producing heat.

Scientists use phononic crystals to make dynamic acoustic tweezers
A research team led by Prof. ZHENG Hairong from the Shenzhen Institutes of Advanced Technology (SIAT) of the Chinese Academy of Sciences use phononic crystals to make dynamic acoustic tweezers.

Acoustic growth factor patterning
For optimally engineered tissues, it is important that biological cues are delivered with appropriate timing and to specific locations.

Researchers create a new acoustic smart material inspired by shark skin
USC researchers created a new sharkskin-inspired smart material that allows shifts in acoustic transmission on demand using magnets.

In acoustic waves, engineers break reciprocity with 'spacetime-varying metamaterials'
Working in an emerging field known to as 'spacetime-varying metamaterials,' University at Buffalo engineers have demonstrated the ability to break reciprocity in acoustic waves.

New type of curved acoustic beams to provide manipulations with nanoparticles
Scientists of Tomsk Polytechnic University and Tomsk State University jointly with their colleagues from Spain modeled and experimentally confirmed the existence of a new type of curved acoustic wave beams -- acoustical hooks.

Study traces evolution of acoustic communication
A study tracing acoustic communication across the tree of life of land-living vertebrates reveals that the ability to vocalize goes back hundreds of millions of years, is associated with a nocturnal lifestyle and has remained stable.

Compact broadband acoustic absorber with coherently coupled weak resonances
Recently, the research teams from Tongji University and The Hong Kong Polytechnic University demonstrate that a compact broadband acoustic absorber can be achieved with coherently coupled 'weak resonances' (resonant sound absorbing systems with low absorption peaks).

Read More: Acoustic Waves News and Acoustic Waves Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.