Leaving its mark: How frailty impacts the blood

April 06, 2020

Globally, human society is aging. A side-effect of this is that age-related disorders, such as frailty, are becoming increasingly common. Frailty includes, not only physical disabilities, but also a decline in cognitive function and an increase in various social problems. The prevalence of this disorder among those aged 65 and over is estimated at 120 million people worldwide.

But, due to their small range of activities, people who suffer from frailty are often hidden. They tend to stay at home and out of the public eye. They can struggle to walk, suffer from memory loss, and find essential tasks, like putting out the rubbish or cleaning the house, very difficult. As such, frail people require more help than their healthy peers. And although there has been some indication that frailty may be reversible, no such interventions have yet been established.

The first step to curing frailty is to find an efficient way to diagnose the disorder. Researchers from the G0 Cell Unit at the Okinawa Institute of Science and Technology Graduate University (OIST), alongside collaborators at the Geriatric Unit at Kyoto University have taken a close look at the blood metabolites of both frail and non-frail elderly patients using a technique called metabolomics. They've found 15 metabolites whose levels in the blood correlate with frailty. Their findings, published in PNAS, have shed light on what causes the disorder and how we might reverse it.

Measuring frailty

For this study, the researchers looked at 19 elderly patients, all above the age of 75, and measured whether they suffered from frailty through three clinical analysis tests - the Edmonton frail scale (EFS), the Montreal cognition assessment (MoCA-J), and the Timed Up and Go Test (TUG).

"Both the EFS and the MoCA-J gave us an indication of the individuals cognitive function, whereas the TUG allowed us to assess their motor ability," said Professor Mitsuhiro Yanagida, who runs the Unit at OIST. "Between them, they also showed health status, mood, short-term memory and other indications, so they gave us a clear idea of who suffered from the disorder."

By using these three tests, the researchers found that nine out of the 19 individuals fit into the category of being frail whereas the other ten did not, however some still did suffer from cognitive impairment or hypomobility, a syndrome which hinders movement.

Identifying markers in the blood

Next, the researchers took blood samples from the 19 patients and had a close look at the metabolites - small molecules of amino acids, sugars, nucleotides and more that make up our blood. They tested 131 metabolites and found that 22 of them correlated with frailty, cognitive impairment and hypomobility. Patients who suffered from these disorders tended to have lower levels of most of these metabolites.

"Blood metabolites are useful as biomarkers for finding, diagnosing and observing symptoms of frailty," said Dr. Takayuki Teruya, Research Unit Technician in the G0 Cell Unit. "By using a simple blood test, we could start to diagnose frailty early on and lengthen healthy life expectancies by early intervention."

The 22 metabolites identified included antioxidant metabolites, amino acids and muscle or nitrogen related metabolites. Fifteen of them correlated with frailty, six indicated cognitive impairment and twelve indicated hypomobility. The metabolites that correlated with frailty overlapped with five of those that indicated cognitive impairment and six that indicated hypomobility.

These metabolites include some of the aging markers in healthy people reported by the same group in 2016. This suggests that the severity of biological aging, which varies between individuals, could be monitored from an early stage of old age by measuring blood biomarkers.

"Notably, we found that levels of the antioxidant, ergothioneine, decreased in the frail patients," said Professor Yanagida, "This metabolite is neuroprotective, meaning that people who suffer from frailty are more vulnerable to oxidative stress."

The research indicates that frailty has a distinct metabolomic profile when compared to other age-related disorders. By demonstrating a link between these metabolites and the symptoms of the disorder, these findings could lead to a different approach to diagnosing and treating frailty.

The researchers in the G0 Cell Unit at OIST collaborated with Dr. Masahiro Kameda and Professor Hiroshi Kondoh in the Geriatric Unit, Graduate School of Medicine at Kyoto University. Kyoto University and OIST have jointly applied for a patent for these findings.

Okinawa Institute of Science and Technology (OIST) Graduate University

Related Aging Articles from Brightsurf:

Surprises in 'active' aging
Aging is a process that affects not only living beings.

Aging-US: 'From Causes of Aging to Death from COVID-19' by Mikhail V. Blagosklonny
Aging-US recently published ''From Causes of Aging to Death from COVID-19'' by Blagosklonny et al. which reported that COVID-19 is not deadly early in life, but mortality increases exponentially with age - which is the strongest predictor of mortality.

Understanding the effect of aging on the genome
EPFL scientists have measured the molecular footprint that aging leaves on various mouse and human tissues.

Muscle aging: Stronger for longer
With life expectancy increasing, age-related diseases are also on the rise, including sarcopenia, the loss of muscle mass due to aging.

Aging memories may not be 'worse, 'just 'different'
A study from the Department of Psychological & Brain Sciences in Arts & Sciences adds nuance to the idea that an aging memory is a poor one and finds a potential correlation between the way people process the boundaries of events and episodic memory.

A new biomarker for the aging brain
Researchers at the RIKEN Center for Biosystems Dynamics Research (BDR) in Japan have identified changes in the aging brain related to blood circulation.

Scientists invented an aging vaccine
A new way to prevent autoimmune diseases associated with aging like atherosclerosis, Alzheimer's disease, and Parkinson's disease was described in the article.

The first roadmap for ovarian aging
Infertility likely stems from age-related decline of the ovaries, but the molecular mechanisms that lead to this decline have been unclear.

Researchers discover new cause of cell aging
New research from the USC Viterbi School of Engineering could be key to our understanding of how the aging process works.

Deep Aging Clocks: The emergence of AI-based biomarkers of aging and longevity
The advent of deep biomarkers of aging, longevity and mortality presents a range of non-obvious applications.

Read More: Aging News and Aging Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.