Nav: Home

Fungi found in cotton can decrease root knot nematode galling

April 06, 2020

Texas A&M University scientists found that a surprising number of fungi naturally associated with cultivated cotton were capable of curtailing the negative effects of a plant parasite known as the Southern root knot nematode, an economically damaging pest of cotton with the ability to significantly reduce yields. These fungi live in the soil or even inside of the cotton plants themselves but their effects on plant health have been mostly overlooked.

Gregory Sword and colleagues at Texas A&M University inoculated cotton seeds with a diverse array of fungal isolates and tested the resulting seedlings in greenhouse trials for susceptibility to gall formation by root knot nematodes. A majority (77 percent) of the fungal treatments reduced galling and these reductions were highly repeatable across independent trials.

"Our findings indicate that many fungi associated with cotton may have previously unappreciated positive effects on plant health and tolerance to stressors," said Sword. "Our research provides a rich pool of candidate fungi for further testing as potential biological tools for root knot nematode management in cotton and other plants."

Taxonomy was not a reliable predictor of the fungal effects, according to Sword. Isolates of the same fungal species had contrasting efforts, as some isolates increased galling while others decreased it.

While this study primarily draws on microbiology, nematology, and plant pathology, Gregory Sword, who started the research, is an insect ecologist with no formal training in those fields.

"The study is an example of multidisciplinary collaboration coming together to conduct a project that otherwise would not have been possible," Sword said. "It's also an example of not being afraid to think outside the box. Lots of people were skeptical at first when I started this research, including some of the co-authors who went on to become very important collaborators!"

Sword first worked with fungal endophytes at the University of Sydney. He accepted a position at Texas A&M University to work on cotton and immediately began compiling a fungal endophyte collection from cotton grown around the state. He used this data to see if he could find fungi that might have a negative effect on insects when inoculated back to the plant.

"The most surprising outcome has been the large number of isolates that we've found so far that have positive effects on plants when they are challenged with a range of biotic and abiotic stressors, including nematodes as we show in the current study," said Sword. "The work even captured the interest of an industry partner that licensed my entire endophyte library for commercial product development."
For more information about this research, read ".

American Phytopathological Society

Related Fungi Articles:

Breaking down wood decomposition by fungi
Through a combination of lab and field experiments, researchers have developed a better understanding of the factors accounting for different wood decomposition rates among fungi.
Impulse for research on fungi
For the first time, the cells of fungi can also be analysed using a relatively simple microscopic method.
Fungi as food source for plants
The number of plant species that extract organic nutrients from fungi could be much higher than previously assumed.
Bark beetles control pathogenic fungi
Pathogens can drive the evolution of social behaviour in insects.
Using fungi to search for medical drugs
An enormous library of products derived from more than 10,000 fungi could help us find new drugs.
Plants and fungi together could slow climate change
A new global assessment shows that human impacts have greatly reduced plant-fungus symbioses, which play a key role in sequestering carbon in soils.
Make fungi think they're starving to stop them having sex, say scientists
Tricking fungi into thinking they're starving could be the key to slowing down our evolutionary arms race with fungal pathogens, as hungry fungi don't want to have sex.
How plants react to fungi
Using special receptors, plants recognize when they are at risk of fungal infection.
Clostridium difficile infections may have a friend in fungi
The pathogen Clostridium difficile, which causes one of the most common hospital-acquired infections in the United States, may have accomplices that until now have gone largely unnoticed.
A 'crisper' method for gene editing in fungi
A team of researchers from Tokyo University of Science, Meiji University, and Tokyo University of Agriculture and Technology, led by Professor Takayuki Arazoe, has recently established a series of novel strategies to increase the efficiency of targeted gene disruption and new gene 'introduction' using the CRISPR/Cas9 system in the rice blast fungus Pyricularia (Magnaporthe) oryzae.
More Fungi News and Fungi Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.