New Research Points The Way To Restoring Noise-Induced Hearing Loss In Mammals, Including Humans

April 06, 1999

Damage to the sensory hair cells in the inner ear is the most frequent cause of permanent hearing loss. Such destruction can be due to a number of causes, most notably exposure to loud noise, as well as certain drugs, disease, genetic factors and the natural process of aging.

While birds have the remarkable natural ability to regenerate sensory hair cells, thus restoring their hearing, mammals -- including humans -- unfortunately lack this ability. Dr. Edwin Rubel, professor of hearing science at the University of Washington's Virginia Merrill Bloedel Hearing Research Center, was one of the discoverers of this ability in birds a decade ago.

Now, Rubel and colleagues in Germany, the United Kingdom and Seattle have published results of their latest research in the March 30 issue of the Proceedings of the National Academy of Sciences, providing an explanation for the inability of mammals past the embryo stage to regenerate sensory hair cells. The new research uses mice specially bred without an enzyme that inhibits cell division.

Hair cell production requires the successful completion of two relatively independent processes, explained Rubel. The first set of events (on which the current research focuses) is the division and proliferation of the "support cells" that survive the damage inflicted by loud noise or other causes. Support cells are located in the sensory epithelium (an area called the organ of Corti on the surface of the inner ear) and they surround the hair cells. In birds, these support cells have the ability to divide and proliferate into new support cells and -- in the second step -- into new hair cells.

However, the support cells in the sensory epithelium of the postnatal mammal are terminally differentiated, or incapable of dividing and proliferating, as they are able to do at the embryo stage.

Earlier research showed that such terminally differentiated cells express high levels of enzymes known as cell-cycle inhibitors, in particular cyclin-dependent kinase inhibitors. These inhibitors are thought to prevent the cells that survive damage from noise or other causes from re-entering the cell cycle and dividing and proliferating.

In the current research, Rubel and colleagues show that a particular kinase inhibitor, p27Kip1, is expressed in the supporting cells of the organ of Corti.

In examining mice bred to lack the gene that causes the cells to produce P27Kip1, the researchers found that supporting cells proliferated, as they do in birds. Without the enzyme, the cells are free to divide.

"It is not news that P27 inhibits cell proliferation," said Rubel. "It is important because of its relation to the future for treating hearing loss. We show for the first time that, under some conditions, the support cells in the mammalian organ of Corti can proliferate in the postnatal animal.

"Our results bring us one small but significant step closer to achieving hair-cell regeneration in humans," said Rubel.

"It remains to be determined whether release from such inhibition not only will cause cell proliferation in the organ of Corti, but also initiate further steps required for hair-cell differentiation, maturation, and functional recovery to complete the hair-cell regeneration process," state the authors.

Co-authors are Hubert Lowenheim, David N. Furness, Jonathan Kil, Christoph Zinn, Karina Gultig, Matthew L. Fero, Deanna Frost, Anthony W. Gummer, James M. Roberts, Carole M. Hackney and Hans-Peter Zenner.

The research was supported by grants from the Deutsche Forschungsgemein-schaft, the Wellcome Trust, the National Institutes of Health and the Oberkotter Foundation.
-end-


University of Washington

Related Hearing Articles from Brightsurf:

Two molecular handshakes for hearing
Scientists have mapped and simulated those filaments at the atomic level, a discovery that shed lights on how the inner ear works and that could help researchers learn more about how and why people lose the ability to hear.

Proof-of-concept for a new ultra-low-cost hearing aid for age-related hearing loss
A new ultra-affordable and accessible hearing aid made from open-source electronics could soon be available worldwide, according to a study published September 23, 2020 in the open-access journal PLOS ONE by Soham Sinha from the Georgia Institute of Technology, Georgia, US, and colleagues.

Ultra-low-cost hearing aid could address age-related hearing loss worldwide
Using a device that could be built with a dollar's worth of open-source parts and a 3D-printed case, researchers want to help the hundreds of millions of older people worldwide who can't afford existing hearing aids to address their age-related hearing loss.

A promise to restore hearing
For the first time, researchers have used base editing to restore partial hearing to mice with a recessive mutation in the gene TMC1 that causes complete deafness, the first successful example of genome editing to fix a recessive disease-causing mutation.

Surprising hearing talents in cormorants
The great cormorant has more sensitive hearing under water than in air.

Veterinarians: Dogs, too, can experience hearing loss
Just like humans, dogs are sometimes born with impaired hearing or experience hearing loss as a result of disease, inflammation, aging or exposure to noise.

Older people who use hearing aids still report hearing challenges
A high proportion of older people with hearing aids, especially those with lower incomes, report having trouble hearing and difficulty accessing hearing care services, according to a study from researchers at Johns Hopkins Bloomberg School of Public Health.

Hearing class
New study finds that the class of neurons responsible for transmitting information from the inner ear to the brain is composed of three molecularly distinct subtypes.

Hearing tests on wild whales
Scientists published the first hearing tests on a wild population of healthy marine mammals.

Genes critical for hearing identified
Fifty-two previously unidentified genes that are critical for hearing have been found by testing over 3,000 mouse genes.

Read More: Hearing News and Hearing Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.