Compound developed from mussels may lead to safer, more effective medical implants

April 07, 2003

Medical implants may soon get better at preventing life-threatening clogs and bacterial infections thanks to an unusual coating that is being developed from mussels, according to researchers at Northwestern University.

They have developed a two-sided coating: one side is a sticky glue based on adhesive proteins secreted by mussels, the other is a special repellant. While the sticky side is designed to attach securely to the surface of the implant, the repellant side prevents the build-up of cells and proteins that typically foul implant devices such as cardiac stents, urinary catheters and dialysis tubing. Such contamination can lead to device malfunction, blood clots or fatal bacterial infections, the researchers say.

Their findings, which are based on laboratory studies, are scheduled to appear in the April 9 print issue of the Journal of the American Chemical Society, a peer-reviewed publication of the American Chemical Society, the world's largest scientific society.

Medical implant contamination, particularly that caused by bacterial infections, is a major medical challenge today. Although researchers have been developing anti-adhesive coatings and other anti-infective techniques for medical devices for years, no single approach works effectively for all types of implant surfaces, says Phillip B. Messersmith, Ph.D., a professor in the Biomedical Engineering Department at the university, located in Evanston, Ill., and lead investigator in the study.

"Our goal is to take advantage of the unique ability of mussels to attach to all types of surfaces, including Teflon, in order to develop a compound that will allow us to treat a variety of implant surfaces with a single approach," Messersmith says. Such a coating would be more versatile and cost-effective than those currently used, he predicts.

The foot of the common mussel (Mytilus edulis) produces a sticky glue that keeps the shelled organism anchored to rocks and other objects, allowing them to withstand the extreme pounding of waves. Chemical analysis of this natural, water-proof glue has shown that the key to its adhesiveness is a unique compound called mussel adhesive protein, which contains a high concentration of an amino acid, DOPA (dihydroxyphenylalanine), which can cling to wet surfaces with extraordinary strength.

While several researchers have focused their attention on developing these mussel adhesive proteins into a type of super-glue, Messersmith reasoned that the same compounds could be used to anchor a repellant component. He decided to attach the sticky DOPA molecule to a well-known repellant molecule, polyethylene glycol (PEG).

The result: A two-sided compound whose sticky side attaches to internal surfaces, but whose nonstick side can resist protein and cell attachment, such as that encountered by implanted medical devices.

In the current study, Messersmith and his associates demonstrated that the new compound could be easily attached to gold and titanium surfaces (common implant materials), rendering these surfaces resistant to cell attachment for up to two weeks. Although some antifouling coatings can fight contamination for a similar length of time, the researchers are optimistic that their compound can eventually be made to last much longer, perhaps permanently.

Just as mussel adhesive protein tends to bind to practically any surface it encounters, the researchers believe that the new compound can similarly attach to other surfaces used for medical devices, including stainless steel and plastic. Preliminary studies involving attachment of the compound to polymer surfaces appear promising, they say.

But antifouling coatings are not the only means of preventing device-related complications following implant surgery: Pills containing anticoagulants or antibiotics are given to some patients, according to the researchers.

The new compound has not yet undergone animal or human testing, Messersmith says. If all goes well in future studies, the compound could be used in medical devices in 3 to 5 years, he predicts.

Besides implants, the compound could be used as a tooth coating to prevent dental plaque, which is caused by bacterial infection.

Ironically, the compound also shows promise in the shipping industry as an environmentally friendly alternative to toxic antifouling coatings currently used on boats to protect against mussels, barnacles and related organisms, Messersmith says.
The National Institutes of Health provided funding for this study.

The online version of the research paper cited above was initially published March 15 on the journal's Web site. Journalists can arrange access to this site by sending an e-mail to or calling the contact person for this release.

American Chemical Society

Related Bacterial Infections Articles from Brightsurf:

Boron nitride nanofilms for protection from bacterial and fungal infections
NUST MISIS material scientists have presented antibacterial nano-coatings based on boron nitride, which are highly effective against microbial pathogens (up to 99.99%).

Scientists discover a new mechanism for cellular defense against viral and bacterial infections
Researchers of IDIBAPS, the University of Barcelona and CNIC have coordinated a study, published in Science, which describes a new mechanism of innate immunity by which cells fight viruses and bacteria.

Allergic immune responses help fight bacterial infections
Researchers from CeMM, MedUni Vienna and Stanford University, have found that a module of the immune system, best known for causing allergic reactions, plays a key role in acquiring host defense against infections triggered by the bacterium Staphylococcus aureus.

Dartmouth-led team engineers new treatment for drug-resistant bacterial infections
A new antibacterial agent that has been engineered by researchers at Dartmouth to essentially hide from the human immune system may treat life-threatening MRSA infections.

Fewer antibiotics to better fight bacterial infections
Reducing the use of antibiotics appears to be one of the only solutions to preserve their effectiveness and limit the emergence of resistance.

Color-changing bandages sense and treat bacterial infections
According to the World Health Organization, antibiotic resistance is one of the biggest threats to global health.

Scientists hope to defeat infections after discovering bacterial espionage
University of Tartu scientists hope create a solution for chronic infections that do not respond to antibiotic treatment after having discovered mechanisms for listening in on sleeping bacteria.

Researchers develop a database to aid in identifying key genes for bacterial infections
A team of scientists from the Universitat Autonoma de Barcelona and the Centre de Regulació Genomica have created the BacFITBase database, which characterises bacterial genes relevant to the infection process in live organisms.

Researchers discover a new defensive mechanism against bacterial wound infections
Wound inflammation which results in impaired wound healing can have serious consequences for patients.

Babies have fewer respiratory infections if they have well-connected bacterial networks
Microscopic bacteria, which are present in all humans, cluster together and form communities in different parts of the body, such as the gut, lungs, nose and mouth.

Read More: Bacterial Infections News and Bacterial Infections Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to