Nav: Home

Salt-tolerant gene found in simple plant nothing to sneeze at

April 07, 2008

Whether a plant withers unproductively or thrives in salty conditions may now be better understood by biologists.

The cellular mechanism that controls salt tolerance has been found in the arabidopsis plant by a Texas AgriLife Research scientist collaborating with an international team.

Complex-N-glycan, a carbohydrate linked to a protein in plant cells, was previously thought to have no helpful function for plant growth and to cause certain allergies in humans, according to Dr. Hisashi Koiwa, lead author of the study in this week's Proceedings of the National Academy of Science.

"This gene has been considered non-essential or even a nuisance," Koiwa said. "People thought it was an allergen and couldn't find anything good it was doing in plants. So, it was thought of as not necessary for the growth or development of a plant."

However, the team discovered that this carbohydrate may, in fact, be responsible for a plants' ability to contend with salt water.

The team's finding "significantly clarifies" the role of the gene and could lead to the development of food crops and other plants capable of producing well in areas with salty water, according to the science academy's journal reviewers.

Almost one-third of nation's irrigated land and half of the world's land is salt-affected, according to the U.S. Agriculture Department's Agriculture Research Service. Salt left in the soil after the water evaporates, the research service notes, means plants don't grow as well and, therefore, yield less.

The study used arabidopsis, a plant commonly used in labs because it grows quickly and has a relatively simple, well-known genome.

The researchers applied salt to the growing plants and then examined sick plants, or those that appeared salt sensitive.

"We had to study the diseased status of the plant to understand its health," Koiwa said. "We looked for sick plants in the lab to find out why they were that way."v

He said the finding may help plant breeders look for this gene as they cross plants in order to develop varieties less affected by salt.
-end-


Texas A&M AgriLife Communications

Related Protein Articles:

Hi-res view of protein complex shows how it breaks up protein tangles
A new, high-resolution view of the structure of Hsp104 (heat shock protein 104), a natural yeast protein nanomachine with six subunits, may show news ways to dismantle harmful protein clumps in disease.
Breaking the protein-DNA bond
A new Northwestern University study finds that unbound proteins in a cell break up protein-DNA bonds as they compete for the single-binding site.
FASEB Science Research Conference: Protein Kinases and Protein Phosphorylation
This conference focuses on the biology of protein kinases and phosphorylation signaling.
Largest resource of human protein-protein interactions can help interpret genomic data
An international research team has developed the largest database of protein-to-protein interaction networks, a resource that can illuminate how numerous disease-associated genes contribute to disease development and progression.
STAT2: Much more than an antiviral protein
A protein known for guarding against viral infections leads a double life, new research shows, and can interfere with cell growth and the defense against parasites.
A protein makes the difference
It is well-established knowledge that blood vessels foster the growth of tumors.
Nuclear protein causes neuroblastoma to become more aggressive
Aggressive forms of neuroblastoma contain a specific protein in their cells' nuclei that is not found in the nuclei of more benign forms of the cancer, and the discovery, made through research from the University of Rochester Medical Center, could lead to new forms of targeted therapy.
How a protein could become the next big sweetener
High-fructose corn syrup and sugar are on the outs with calorie-wary consumers.
High animal protein intake associated with higher, plant protein with lower mortality rate
The largest study to examine the effects of different sources of dietary protein found that a high intake of proteins from animal sources -- particularly processed and unprocessed red meats -- was associated with a higher mortality rate, while a high intake of protein from plant sources was associated with a lower risk of death.
Protein in, ammonia out
A recent study has compiled and analyzed data from 25 previous studies.

Related Protein Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...