Brown University scientists discover new principle in material science

April 07, 2010

PROVIDENCE, R.I. [Brown University] -- Materials scientists have known that a metal's strength (or weakness) is governed by dislocation interactions, a messy exchange of intersecting fault lines that move or ripple within metallic crystals. But what happens when metals are engineered at the nanoscale? Is there a way to make metals stronger and more ductile by manipulating their nanostructures?

Brown University scientists may have figured out a way. In a paper published in Nature, Huajian Gao and researchers from the University of Alabama and China report a new mechanism that governs the peak strength of nanostructured metals. By performing 3-D atomic simulations of divided grains of nanostructured metals, Gao and his team observed that dislocations organize themselves in highly ordered, necklace-like patterns throughout the material. The nucleation of this dislocation pattern is what determines the peak strength of materials, the researchers report.

The finding could open the door to producing stronger, more ductile metals, said Gao, professor of engineering at Brown. "This is a new theory governing strength in materials science," he added. "Its significance is that it reveals a new mechanism of material strength that is unique for nanostructured materials."

Divide a grain of metal using a specialized technique, and the pieces may reveal boundaries within the grain that scientists refer to as twin boundaries. These are generally flat, crystal surfaces that mirror the crystal orientations across them. The Chinese authors created nanotwinned boundaries in copper and were analyzing the space between the boundaries when they made an interesting observation: The copper got stronger as the space between the boundaries decreased from 100 nanometers, ultimately reaching a peak of strength at 15 nanometers. However, as the spacing decreased from 15 nanometers, the metal got weaker.

"This is very puzzling," Gao said.

So Gao and Brown graduate student Xiaoyan Li dug a little further. The Brown scientists reproduced their collaborators' experiment in computer simulations involving 140 million atoms. They used a supercomputer at the National Institute for Computational Sciences in Tennessee, which allowed them to analyze the twin boundaries at the atomic scale. To their surprise, they saw an entirely new phenomenon: A highly ordered dislocation pattern controlled by nucleation had taken hold and dictated the copper's strength. The pattern was characterized by groups of atoms near the dislocation core and assembled in highly ordered, necklace-like patterns.

"They're not getting in each other's way. They're very organized," Gao said.

From the experiments and the computer modeling, the researchers theorize that at the nanoscale, dislocation nucleation can become the governing principle to determining a metal's strength or weakness. The authors presented a new equation in the Nature paper to describe the principle.

"Our work provides a concrete example of a source-controlled deformation mechanism in nanostructured materials for the first time and, as such, can be expected to have a profound impact on the field of materials science," Gao said.
The other researchers who contributed to the paper are Yujie Wei from the University of Alabama and Ke Lu and Lei Lu from the Chinese Academy of Sciences. The U.S. National Science Foundation, the National Science Foundation in China and the Ministry of Science and Technology in China funded the research.

Brown University

Related Metals Articles from Brightsurf:

Liquid metals come to the rescue of semiconductors
Two-dimensional semiconductors offer a possible solution to the limited potential for further shrinking of traditional silicon-based electronics: the long-predicted end of 'Moore's Law'.

Discovery of large family of two-dimensional ferroelectric metals
Recently, a team from University of Chinese Academy of Sciences, led by Prof.

Electrons obey social distancing in 'strange' metals
A Cornell University-led collaboration has used state-of-the-art computational tools to model the chaotic behavior of Planckian, or ''strange,'' metals.

APS tip sheet: Ultimate strength of metals
A new model is able to accurately determine the peak strength of polycrystalline metals.

Semiconductors can behave like metals and even like superconductors
The crystal structure at the surface of semiconductor materials can make them behave like metals and even like superconductors, a joint Swansea/Rostock research team has shown.

Metals could be the link to new antibiotics
Compounds containing metals could hold the key to the next generation of antibiotics to combat the growing threat of global antibiotic resistance.

New quantum switch turns metals into insulators
Researchers at the University of British Columbia have demonstrated an entirely new way to precisely control electrical currents by leveraging the interaction between an electron's spin and its orbital rotation around the nucleus.

A new look at 'strange metals'
'Strange metals' could be the key to finally understanding high-temperature superconductors.

Stellar heavy metals can trace history of galaxies
Astronomers have cataloged signs of nine heavy metals in the infrared light from supergiant and giant stars.

Surface effects affect the distribution of hydrogen in metals
The researchers from Peter the Great St.Petersburg Polytechnic University and Institute of Problems of Mechanical Engineering of the Russian Academy of Sciences studied the distribution of hydrogen in metals in the process of standard testing for hydrogen cracking.

Read More: Metals News and Metals Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to