Nav: Home

Future electronics based on carbon nanotubes

April 07, 2015

WASHINGTON D.C., April 7, 2015 - The exceptional properties of tiny molecular cylinders known as carbon nanotubes have tantalized researchers for years because of the possibility they could serve as a successors to silicon in laying the logic for smaller, faster and cheaper electronic devices.

First of all they are tiny -- on the atomic scale and perhaps near the physical limit of how small you can shrink a single electronic switch. Like silicon, they can be semiconducting in nature, a fact that is essential for circuit boards, and they can undergo fast and highly controllable electrical switching.

But a big barrier to building useful electronics with carbon nanotubes has always been the fact that when they're arrayed into films, a certain portion of them will act more like metals than semiconductors -- an unforgiving flaw that fouls the film, shorts the circuit and throws a wrench into the gears of any potential electronic device.

In fact, according to University of Illinois-Urbana Champaign professor John Rogers, the purity needs to exceed 99.999 percent -- meaning even one bad tube in 100,000 is enough to kill an electronic device. "If you have lower purity than that," he said, "that class of materials will not work for semiconducting circuits."

Now Rogers and a team of researchers have shown how to strip out the metallic carbon nanotubes from arrays using a relatively simple, scalable procedure that does not require expensive equipment. Their work is described this week in the Journal of Applied Physics, from AIP Publishing.

The Road to Purification

Though it has been a persistent problem for the last 10-15 years, the challenge of making uniform, aligned arrays of carbon nanotubes packed with good densities on thin films has largely been solved by several different groups of scientists in recent years, Rogers said.

That just left the second problem, which was to find a way to purify the material to make sure that none of the tubes were metallic in character -- a thorny problem that had remained unsolved. There were some methods of purification that were easy to do but fell far short of the level of purification necessary to make useful electronic components. Very recent approaches offer the right level of purification but rely on expensive equipment, putting the process out of reach of most researchers.

As the team reports this week, they were able to deposit a thin coating of organic material directly on top of a sheet of arrayed nanotubes in contact with a sheet of metal. They then applied current across the sheet, which allowed the current to flow through the nanotubes that were metal conductors -- but not the bulk of the tubes, which were semiconducting.

The current heated up the metal nanotubes a tiny amount -- just enough to create a "thermal capillary flow" that opened up a trench in the organic topcoat above them. Unprotected, the metallic tubes could then be etched away using a standard benchtop instrument, and then the organic topcoat could be washed away. This left an electronic wafer coated with semiconducting nanotubes free of metallic contaminants, Rogers said. They tested it by building arrays of transistors, he said.

"You end up with a device that can switch on and off as expected, based on purely semiconducting character," Rogers said.
The article, "Direct current injection and thermocapillarity flow for purification of aligned arrays of single-walled carbon nanotubes," is authored by Xu Xie, Muhammad A. Wahab, Yuhang Li, Ahmad E. Islam, Bojan Tomic, Jiyuan Huang, Branden Burns, Eric Seabron, Simon N. Dunham, Frank Du, Jonathan Lin, William L. Wilson, Jizhou Song, Yonggang Huang, Muhammad A. Alam and John A. Rogers. It appears in the Journal of Applied Physics on April 7, 2015 (DOI: 10.1063/1.4916537). After that date, it can be accessed at:

The researchers on this paper are affiliated with the University of Illinois at Urbana-Champaign; Purdue University in West Lafayette, Indiana; Beihang University in Beijing, China; Zhejiang University in Hangzhou, China; and Northwestern University in Evanston, Illinois.


Journal of Applied Physics is an influential international journal publishing significant new experimental and theoretical results of applied physics research. See:

American Institute of Physics

Related Carbon Nanotubes Articles:

Carbon nanotubes self-assemble into tiny transistors
Carbon nanotubes can be used to make very small electronic devices, but they are difficult to handle.
Reusable carbon nanotubes could be the water filter of the future, says RIT study
Enhanced single-walled carbon nanotubes offer a more effective and sustainable approach to water treatment and remediation than the standard industry materials -- silicon gels and activated carbon -- according to a paper by RIT researchers John-David Rocha and Reginald Rogers.
How to roll a nanotube: Demystifying carbon nanotubes' structure control
A key advancement in the design of high performance carbon-based electronics.
Carbon nanotubes improve metal's longevity under radiation
Carbon nanotubes may improve longevity in nuclear reactors.
New process enables easier isolation of carbon nanotubes
Using this new method, long carbon nanotubes with high structural integrity, and without contaminants, can be obtained.
New device uses carbon nanotubes to snag molecules
Engineers at MIT have devised a new technique for trapping hard-to-detect molecules, using forests of carbon nanotubes.
Future electronics based on carbon nanotubes
A big barrier to building useful electronics with carbon nanotubes has always been the fact that when they're arrayed into films, a certain portion of them will act more like metals than semiconductors.
Can engineered carbon nanotubes help to avert our water crisis?
Carbon nanotube membranes have a bright future in addressing the world's growing need to purify water from the sea, researchers say in a study published in the journal Desalination.
Future flexible electronics based on carbon nanotubes
Researchers have demonstrated a new method to improve the reliability and performance of transistors and circuits based on carbon nanotubes, a semiconductor material that has long been considered by scientists as one of the most promising successors to silicon for smaller, faster and cheaper electronic devices.
Synthesis of structurally pure carbon nanotubes using molecular seeds
For the first time, researchers at Empa and the Max Planck Institute for Solid State Research have succeeded in 'growing' single-wall carbon nanotubes with a single predefined structure -- and hence with identical electronic properties.

Related Carbon Nanotubes Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...