Nav: Home

Studying the impact of wildfires on air quality, environment

April 07, 2016

AMHERST, Mass. - Research assistant professor Ezra Wood at the University of Massachusetts Amherst has been awarded a four-year, $800,000 grant from the National Oceanic and Atmospheric Administration (NOAA) to participate in one of the largest studies to date of atmospheric chemistry in wildfires. It will focus on North America, but results should apply to many areas around the world where fires occur, such as those used to clear forests for agriculture in Indonesia and Brazil, Wood says.

The work, to be conducted with co-investigators from Aerodyne Research, Inc. of Billerica, Mass., will advance understanding of the effect fires have on the environment and the atmosphere. Field work will begin in October.

"With climate change, forest fires are likely to be more intense and frequent," he points out. "And the use of fire for forest clearing is a very common practice, as is burning biomass as fuel. Overall, we will address what is being emitted, what gases and what sorts of particles, and in what quantities. We'd like to be able to help modelers predict, for example, if you burn this many acres or woodland, how many grams of compound A and particle B will be released into the atmosphere, what happens to them chemically and how long they persist."

Some materials emitted by wildfires are transformed chemically by sunlight, the atmospheric chemist notes. Some of these are very short-lived while others last much longer. Also, the properties of some compounds are altered by processes called chemical aging. Some organic compounds start out as gas, for example, but after undergoing photochemistry from exposure to sunlight they turn into particles, he points out.

Interestingly, Wood says that one of the biggest unknowns in this field is the nighttime atmospheric chemistry of wildfires, and this will be one of the largest studies to investigate such differences.

"Combustion is often different at night," he says, "because there is higher humidity and cooler temperatures. The fire may smolder more and have less open flame. We also know that pollutants emitted from the ground at night usually don't mix as well in the atmosphere as they do during the day; the smoke and other emissions can hang near the surface until the sun comes up and causes vertical mixing in the atmosphere. This is one of the most under-studied areas and I'm looking forward to making some interesting discoveries."

In addition to climate change affecting wildfire incidence, fires also affect climate, Wood says. Particles emitted from fires can have both a warming and a cooling effect. Light-colored particles reflect sunlight and have a cooling effect, while black or dark-colored ones absorb sunlight and have a warming effect. "These optical properties can change as they are processed in the atmosphere. Particles also affect cloud formation, brightness and lifetime, all of which affect climate," he adds.

During the first year of the study, Wood and colleagues will conduct experiments at a fire laboratory in Missoula, Mont., where known quantities of different fuels can be burned in a controlled environment and the pollutant emissions analyzed by many different research groups' analytical instrumentation. This information on emission factors for different fuel types can be used as inputs to models that predict the impact of forest fires on air quality and climate change.

In the later years of this work, the scientists will use research aircraft and a ground-based mobile air-sampling laboratory for analyses near and far from an actual wildfire. In particular, Wood will focus on hydrogen oxide radicals, which are short-lived catalysts that initiate some of the atmospheric chemical reactions in and around blazes.

Quantifying such radicals will help to answer questions about how long the compounds last in the air and to characterize what happens to compounds that are formed in the smoke plume and not emitted directly by the fire, such as ozone. This work will complement Wood's ongoing research on hydrogen oxide radical chemistry in non-burning forests, which is currently supported by the National Science Foundation.

Wood and colleagues' study is part of NOAA's Fire Influence on Regional and Global Environments Experiment (FIREX) project.
-end-


University of Massachusetts at Amherst

Related Climate Change Articles:

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.
Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.
Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.
Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.
A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.
Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).
Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.
Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.
Could climate change cause infertility?
A number of plant and animal species could find it increasingly difficult to reproduce if climate change worsens and global temperatures become more extreme -- a stark warning highlighted by new scientific research.
Predicting climate change
Thomas Crowther, ETH Zurich identifies long-disappeared forests available for restoration across the world.
More Climate Change News and Climate Change Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.