Nav: Home

Common food additive may weaken defenses against influenza

April 07, 2019

Orlando, Fla. (April 7, 2019) - Research conducted in mice suggests the food additive tert-butylhydroquinone (tBHQ)--found in many common products from frozen meat to crackers and fried foods--suppresses the immune response the body mounts when fighting the flu. In addition to increasing the severity of flu symptoms, the study found evidence that tBHQ exposure could reduce the effectiveness of the flu vaccine through its effects on T cells, a vital component of the immune system.

Researchers say the connection may help explain why seasonal influenza continues to pose a major health threat worldwide. An estimated 290,000-650,000 people globally die from flu-related respiratory problems each year.

"Our studies showed that mice on a tBHQ diet had a weakened immune response to influenza (flu) infection," said Robert Freeborn, a fourth-year PhD candidate at Michigan State University. "In our mouse model, tBHQ suppressed the function of two types of T cells, helper and killer T cells. Ultimately, this led to more severe symptoms during a subsequent influenza infection."

Freeborn will present the research at the American Society for Pharmacology and Experimental Therapeutics annual meeting during the 2019 Experimental Biology meeting, held April 6-9 in Orlando, Fla.

When a person is infected with influenza virus, helper T cells direct other parts of the immune system and help coordinate an appropriate response, while killer T cells hunt down infected cells and clear them from the body. In their experiments, the researchers found mice eating a tBHQ-spiked diet were slower to activate both helper T cells and killer T cells, resulting in slower clearance of the virus.

"Right now, my leading hypothesis is that tBHQ causes these effects by upregulating some proteins which are known to suppress the immune system," said Freeborn. "Expression of these proteins, CTLA-4 and IL-10, was upregulated in two different models we use in the lab. However, more work is necessary to determine if upregulation of these suppressive proteins is indeed causative for the effects of tBHQ during influenza infection."

What's more, when the mice were later re-infected with a different but related strain of influenza, those on the tBHQ diet had a longer illness and lost more weight. This suggests that tBHQ impaired the "memory response" that typically primes the immune system to fight a second infection, Freeborn said. Since the memory response is central to how vaccines work, impairment of this function could potentially reduce the efficacy of the flu vaccine.

T cells are involved in the immune response to a variety of diseases, so tBHQ could also play a role in other types of infectious diseases, Freeborn added.

tBHQ is an additive used to prevent spoilage, with a maximum allowed concentration of 200 parts per million in food products. It is unclear how much tBHQ people are exposed to, though estimates based on model diets have suggested some U.S. consumers eat almost double the maximum allowable amount of tBHQ suggested by the Joint FAO/WHO Expert Committee on Food Additives and that people in other parts of the world may consume up to 11 times the maximum allowable amount. The level of tBHQ exposure in Freeborn's studies falls within estimates of human exposure.

"It can be hard to know if you are consuming tBHQ, as it is not always listed on ingredient labels," said Freeborn, adding that this is often the case when tBHQ is used in food preparation, such as in the oil used to fry a chip. "The best way to limit tBHQ exposure is to be cognizant about food choices. Since tBHQ is largely used to stabilize fats, a low-fat diet and cutting down on processed snacks will help reduce tBHQ consumption."

Freeborn emphasized that getting a yearly flu shot remains the best way to prevent influenza infection. Though it is possible to contract the flu after getting the vaccine, being vaccinated has been shown to significantly reduce the length and severity of the illness.

Building on their studies conducted in mice, the researchers plan to use human blood samples to further investigate how tBHQ affects T cell activity.

Robert Freeborn will present this research on Sunday, April 7, from 9 a.m.-4 p.m. in Exhibit Hall-West Hall B, Orange County Convention Center (abstract). Contact the media team for more information or to obtain a free press pass to attend the meeting.

-end-
About Experimental Biology 2019

Experimental Biology is an annual meeting that attracts more than 12,000 scientists and exhibitors from five host societies and more than two dozen guest societies. With a mission to share the newest scientific concepts and research findings shaping clinical advances, the meeting offers an unparalleled opportunity for exchange among scientists from across the U.S. and the world who represent dozens of scientific areas, from laboratory to translational to clinical research. http://www.experimentalbiology.org #expbio

About the American Society for Pharmacology and Experimental Therapeutics (ASPET)

ASPET is a 5,000-member scientific society whose members conduct basic and clinical pharmacological research within the academic, industrial and government sectors. Our members discover and develop new medicines and therapeutic agents that fight existing and emerging diseases, as well as increase our knowledge regarding how therapeutics affects humans. http://www.aspet.org

Find more press materials at: https://www.eurekalert.org/meetings/eb/2019/newsroom/.

Experimental Biology

Related Immune System Articles:

Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.
Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.
How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.
Immune system upgrade
Theoretically, our immune system could detect and kill cancer cells.
Using the immune system as a defence against cancer
Research published today in the British Journal of Cancer has found that a naturally occurring molecule and a component of the immune system that can successfully target and kill cancer cells, can also encourage immunity against cancer resurgence.
First impressions go a long way in the immune system
An algorithm that predicts the immune response to a pathogen could lead to early diagnosis for such diseases as tuberculosis
Filming how our immune system kill bacteria
To kill bacteria in the blood, our immune system relies on nanomachines that can open deadly holes in their targets.
Putting the break on our immune system's response
Researchers have discovered how a tiny molecule known as miR-132 acts as a 'handbrake' on our immune system -- helping us fight infection.
Decoding the human immune system
For the first time ever, researchers are comprehensively sequencing the human immune system, which is billions of times larger than the human genome.
Masterswitch discovered in body's immune system
Scientists have discovered a critical part of the body's immune system with potentially major implications for the treatment of some of the most devastating diseases affecting humans.
More Immune System News and Immune System Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.