Nav: Home

New method to monitor Alzheimer's proteins

April 07, 2020

Physicists at the Center for Integrated Nanostructure Physics (CINAP), within the Institute for Basic Science (IBS, South Korea), have reported a new method to identify the aggregation state of amyloid beta (Aβ) proteins in solution. Published in ACS Nano, this finding could represent a step forward in the early diagnosis of Alzheimer's disease.

The gradual accumulation of Aβ in the brain leads to incurable dementia. The disease progression is strongly correlated with the form of the Aβ proteins: 4-nm-size monomers evolve to oligomer of several hundred nanometers and reaches the fibrillar state forming plaques of up to a few tens of micrometers in size.

The researchers clearly discerned the different Aβ stages using THz near-field conductance measurements. This technique measures the energy absorbed by molecules at an energy band of around 1-10 meV (or 0.2-2.4 THz), and it is considered an effective technique for investigating the transformation of biological macromolecules without generating heat. The scientists measured how Aβ proteins in the solution are disturbed by incident THz radiation and noticed that the results were correlated with the form of the Aβ proteins: monomer, oligomer and fibril. Then, they derived the optical conductance, which decreases with the evolving fibrillization states and increases with the elevating molar concentrations.

Since the progressive stages of the disease can be differentiated simply with this technique, the team derived a dementia quotient (DQ) from the optical conductance, using the so-called Drude?Smith model. A DQ value of around one indicates that Aβ is in a fibril state, around 0.64 an oligomeric state, and nearly zero is at a monomeric state.

"We believe that our result gives us a significant paradigm shift in the Alzheimer's disease research field, since the dementia quotient is clearly identified from the label-free conductance measurement of different Aβ protein structural states," says Chaejeong Heo, one of the leading authors of this study. CINAP Director, Young Hee Lee adds "This index can be useful for early detection of toxic Aβ protein aggregation and fibrillization observed in Alzheimer's disease."
-end-


Institute for Basic Science

Related Amyloid Beta Articles:

Amyloid formation in the International Space Station
The collaborative research team of Japan using the International Space Station (ISS) successfully characterized Alzheimer's disease-related amyloid fibril formation under microgravity conditions.
New microscopy method provides unprecedented look at amyloid protein structure
Neurodegenerative diseases such as Alzheimer's and Parkinson's are often accompanied by amyloid proteins in the brain that have become clumped or misfolded.
Gold nanoparticles uncover amyloid fibrils
EPFL scientists have developed powerful tools to unmask the diversity of amyloid fibrils, which are associated with Alzheimer's disease and other neurodegenerative disorders.
How the historically misunderstood amyloid helps to store memories
For the first time, scientists from the Stowers Institute for Medical Research and collaborators have described the structure of an endogenously sourced, functioning neuronal amyloid at atomic resolution.
Scientists find functioning amyloid in healthy brain
The generation of amyloids, a special form of fibrillar proteins, is believed to result in Alzheimer's, Parkinson's and Huntington's diseases.
New mathematical model for amyloid formation
Scientists report on a mathematical model for the formation of amyloid fibrils.
What comes first, beta-amyloid plaques or thinking and memory problems?
The scientific community has long believed that beta-amyloid, a protein that can clump together and form sticky plaques in the brain, is the first sign of Alzheimer's disease.
The seeds of Parkinson's disease: amyloid fibrils that move through the brain
Researchers at Osaka University used microbeam X-ray diffraction to study the ultrastructure of Lewy bodies in post-mortem brains of Parkinson's disease patients.
Direct toxic action of beta-amyloid identified
Hyperactive neurons in specific areas of the brain are believed to be an early perturbation in Alzheimer's disease.
Amyloid is a less accurate marker for measuring severity, progression of Alzheimer's
Researchers find fluorodeoxyglucose (FDG) PET is a better indicator of cognitive performance when compared to PET scans that detect amyloid protein.
More Amyloid Beta News and Amyloid Beta Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Debbie Millman: Designing Our Lives
From prehistoric cave art to today's social media feeds, to design is to be human. This hour, designer Debbie Millman guides us through a world made and remade–and helps us design our own paths.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Insomnia Line
Coronasomnia is a not-so-surprising side-effect of the global pandemic. More and more of us are having trouble falling asleep. We wanted to find a way to get inside that nighttime world, to see why people are awake and what they are thinking about. So what'd Radiolab decide to do?  Open up the phone lines and talk to you. We created an insomnia hotline and on this week's experimental episode, we stayed up all night, taking hundreds of calls, spilling secrets, and at long last, watching the sunrise peek through.   This episode was produced by Lulu Miller with Rachael Cusick, Tracie Hunte, Tobin Low, Sarah Qari, Molly Webster, Pat Walters, Shima Oliaee, and Jonny Moens. Want more Radiolab in your life? Sign up for our newsletter! We share our latest favorites: articles, tv shows, funny Youtube videos, chocolate chip cookie recipes, and more. Support Radiolab by becoming a member today at Radiolab.org/donate.