How wallflowers evolved a complementary pair of plant defenses

April 07, 2020

A pair of chemicals used by wallflowers and their kin to ward off predators have evolved to complement each other, with one targeting generalist herbivores and the other targeting specialised herbivores that have become resistant to the generalist defence.

Plants are engaged in an ongoing arms race with the creatures that eat them. They evolve defences to deter plant eaters, while their herbivores evolve counter-defences. The new study, published today in eLife, reveals details of the evolutionary chemical arms race in the wallflower genus Erysimum, a group of flowering plants in the mustard family Brassicaceae.

The first line of defence in all Brassicaceae plants are chemicals called glucosinolates, which are activated when predatory creatures nibble on the plants. More recently, wallflowers have developed a second line of defence by producing chemicals called cardenolides to deter plant-eating creatures that evolved defences to glucosinolates.

"Studying how these two defences evolved in this large genus can help scientists understand the trade-offs that the plants face as they try to defend themselves against multiple enemies," explains lead author Tobias Züst, PhD, Research Associate at the Institute of Plant Sciences, University of Bern, Switzerland.

To do this, Züst and his team sequenced the genome of the wormseed wallflower, a short-lived wild mustard. They next created a detailed family tree for this plant and 47 other wallflower species and compared the diversity and abundance of glucosinolates and cardenolides across these species. They found that the two defences varied independently of each other, and that closely related, geographically co-occurring species shared similar cardenolide traits, but not glucosinolate traits. This is likely a result of separate selective pressures acting on each defence.

"Even though most species co-expressed two different types of potentially costly chemical defences, there was no evidence of a trade-off between glucosinolates and cardenolides," Züst says. "Instead, these two types of chemicals appear to complement each other and do not serve redundant functions."

Züst adds that the emergence of cardenolides corresponds with an explosion in the number of wallflower species, which suggests this second complementary defence may have allowed these plants to succeed and diversify into new habitats.

"Further analysis of the wormseed wallflower genome will be needed to help scientists identify glucosinolate and cardenolide-producing genes in this species, as well as aid our understanding of the function of these chemicals in the evolution of Brassicaceae defences," concludes senior author Georg Jander, Professor at the Boyce Thompson Institute in Ithaca, New York, US.
-end-
Reference

The paper 'Independent evolution of ancestral and novel defenses in a genus of toxic plants (Erysimum, Brassicaceae)' can be freely accessed online at https://doi.org/10.7554/eLife.51712. Contents, including text, figures and data, are free to reuse under a CC BY 4.0 license.

Media contact

Emily Packer, Senior Press Officer
eLife
e.packer@elifesciences.org
01223 855373

About eLife

eLife is a non-profit organisation inspired by research funders and led by scientists. Our mission is to help scientists accelerate discovery by operating a platform for research communication that encourages and recognises the most responsible behaviours in science. We publish important research in all areas of the life and biomedical sciences, including Evolutionary Biology and Plant Biology, which is selected and evaluated by working scientists and made freely available online without delay. eLife also invests in innovation through open-source tool development to accelerate research communication and discovery. Our work is guided by the communities we serve. eLife is supported by the Howard Hughes Medical Institute, the Max Planck Society, the Wellcome Trust and the Knut and Alice Wallenberg Foundation. Learn more at https://elifesciences.org/about.

To read the latest Evolutionary Biology research published in eLife, visit https://elifesciences.org/subjects/evolutionary-biology.

And for the latest in Plant Biology, see https://elifesciences.org/subjects/plant-biology.

About the University of Bern

Globally connected and regionally anchored, the University of Bern is focused on excellence in research and teaching. It was here that Albert Einstein qualified as a lecturer.

Internationally renowned for space research, dentistry, climate science and biomedical engineering, it also hosts several global research platforms in areas such as sustainable development.

With roots in the 1500s, this comprehensive university is based in the heart of Switzerland's capital, Bern, near its UNESCO-listed medieval old town. Some 18,500 students from more than 125 nations benefit from a full range of disciplines at all levels, ranging from medicine to mathematics, economics to world literature, archaeology to law and more. http://www.unibe.ch.

Full list of funders and grant numbers for this research:

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (PZ00P3-161472), National Science Foundation (1811965), National Science Foundation (1645256), Triad Foundation, Deutsche Forschungsgemeinschaft (DFG-PE 2059/3-1), Agencia Estata de Investigacion, Spain (CGL2017-86626-C2-2-P), LOEWE Program Insect Biotechnology and Bioresources, Junta de Andalucia Programa Operativo (FEDER 2014-2020 A-RNM-505-UGR18)

eLife

Related Plants Articles from Brightsurf:

When plants attack: parasitic plants use ethylene as a host invasion signal
Researchers from Nara Institute of Science and Technology have found that parasitic plants use the plant hormone ethylene as a signal to invade host plants.

210 scientists highlight state of plants and fungi in Plants, People, Planet special issue
The Special Issue, 'Protecting and sustainably using the world's plants and fungi', brings together the research - from 210 scientists across 42 countries - behind the 2020 State of the World's Plants and Fungi report, also released today by the Royal Botanic Gardens, Kew.

New light for plants
Scientists from ITMO in collaboration with their colleagues from Tomsk Polytechnic University came up with an idea to create light sources from ceramics with the addition of chrome: the light from such lamps offers not just red but also infrared (IR) light, which is expected to have a positive effect on plants' growth.

How do plants forget?
The study now published in Nature Cell Biology reveals more information on the capacity of plants, identified as 'epigenetic memory,' which allows recording important information to, for example, remember prolonged cold in the winter to ensure they flower at the right time during the spring.

The revolt of the plants: The arctic melts when plants stop breathing
A joint research team from POSTECH and the University of Zurich identifies a physiologic mechanism in vegetation as cause for Artic warming.

How plants forget
New work published in Nature Cell Biology from an international team led by Dr.

Ordering in? Plants are way ahead of you
Dissolved carbon in soil can quench plants' ability to communicate with soil microbes, allowing plants to fine-tune their relationships with symbionts.

When good plants go bad
Conventional wisdom suggests that only introduced species can be considered invasive and that indigenous plant life cannot be classified as such because they belong within their native range.

How plants handle stress
Plants get stressed too. Drought or too much salt disrupt their physiology.

Can plants tell us something about longevity?
The oldest living organism on Earth is a plant, Methuselah a bristlecone pine (Pinus longaeva) (pictured below) that is over 5,000 years old.

Read More: Plants News and Plants Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.