The evolution of color: Team shows how butterfly wings can shift in hue

April 07, 2020

WOODS HOLE, Mass. - A selective mating experiment by a curious butterfly breeder has led scientists to a deeper understanding of how butterfly wing color is created and evolves. The study, led by scientists at University of California, Berkeley, and the eLife.

When the biologists happened upon the breeder's buckeye butterflies--which normally are brown--sporting brilliant blue wings through selective mating, they jumped on the chance to explore what caused the change in color of the tiny, overlapping scales that produce the wing's color mosaic and pattern. They found that buckeyes and other Junonia species can create a rainbow of structural colors simply by tuning the thickness of the wing scale's bottom layer (the lamina), which creates iridescent colors in the same way a soap bubble does.

Structural color, often used in butterflies and other animals to create blue and green, is created by microscopic structures interacting with light to intensify some colors and diminish others. In contrast, pigmentary coloration is created by the absorption of specific colors (wavelengths) of light and is commonly employed to create colors such as yellow, orange, and brown.

"It was a surprise to find that the lamina, a thin sheet that looks very simple and plain, is the most important source of structural color in so many butterfly wing scales," says first author

First, the team showed that blueness in the selectively bred buckeye wings was, in fact, structural color and was generated largely by the lamina. They then compared these blue scales with wild-type brown scales, and found the same general architecture except the lamina was about 75 percent thicker in the blue scales. Finally, they measured lamina thickness in nine species of Junonia and a tenth species, Precis octavia, and found a consistent relationship with scale color.

"In each Junonia species, structural color came from the lamina. And they are producing a big range of lamina thicknesses that create a rainbow of different colors, everything from gold to magenta to blue to green," says Thayer. "This helps us understand how structural color has evolved over millions of years." The color shifts as lamina thickness increases according to Newton's series, a characteristic color sequence for thin films, the team found.

"The color comes down to a relatively simple change in the scale: the thickness of the lamina," says senior author
optix, that can regulate lamina structural colors, and are currently searching for other candidates.

It was fortunate that the butterfly farmer, Edith Smith, had chosen buckeyes (Junonia coenia) for her mating experiment. For a variety of reasons, it is an ideal species for scientists to work with. "The buckeye genome is sequenced and other labs are working with it and have developed a number of experimental tools and protocols," Patel says. "And it grows reasonably well in the lab, which is a big plus because many butterflies can be hard to raise."

Smith's bred buckeyes, which displayed "rapid evolution" from brown scales to blue, helped them to understand that the same, simple mechanism of tuning lamina thickness can facilitate evolutionary change that can span just several generations or millions of years.
The Marine Biological Laboratory (MBL) is dedicated to scientific discovery - exploring fundamental biology, understanding marine biodiversity and the environment, and informing the human condition through research and education. Founded in Woods Hole, Massachusetts in 1888, the MBL is a private, nonprofit institution and an affiliate of the

Marine Biological Laboratory

Related Led Articles from Brightsurf:

Impurities enhance polymer LED efficiencies
New research published in EPJ B reveals that the higher-than-expected efficiency of PLEDs can be reached through interactions between triplet excitons, and impurities embedded in their polymer layers.

UCLA-led team of scientists discovers why we need sleep
Why is sleep so vital to our health? A UCLA-led team of scientists has answered this question and shown for the first time that a dramatic change in the purpose of sleep occurs at the age of about 2-and-a-half.

Study pinpoints process that might have led to first organic molecules
New research led by the American Museum of Natural History and funded by NASA identifies a process that might have been key in producing the first organic molecules on Earth about 4 billion years ago, before the origin of life.

Layer of nanoparticles could improve LED performance and lifetime
Adding a layer of nanoparticles to LED designs could help them produce more light for the same energy, and also increase their lifetime.

Mini-LED, Micro-LED and OLED displays: Present status and future perspectives
''Mini-LED, Micro-LED or OLED displays: who wins?'' is a heated debatable question.

Indigenous-led health care partnerships flourishing in Canada
Innovative, Indigenous-led health care partnerships and cultural healing practices have shown improved health outcomes and access to care, and have become important features of the medical landscape in Canada, according to a new analysis in CMAJ (Canadian Medical Association Journal).

A way to look younger is right under your nose, UCLA-led study finds
Rhinoplasty, or cosmetic nose surgery, may make a woman look up to three years younger, according to a new study led by researchers at UCLA that used a type of artificial intelligence known as machine learning.

LED lighting in greenhouses helps but standards are needed
While LED lighting can enhance plant growth in greenhouses, standards are needed to determine the optimal intensity and colors of light, according to Rutgers research that could help improve the energy efficiency of horticultural lighting products.

Pharmacist-led interventions may help prevent cardiovascular disease
With their expertise in the safe and effective use of medications, pharmacists can help in the management of chronic diseases.

HKU-led study on language speed and efficiency
Are some languages more efficient than others? In a recent study led by the University of Hong Kong (HKU) titled 'Different languages, similar encoding efficiency: comparable information rates across the human communicative niche', an international and interdisciplinary team comprising scientists at the Laboratoire Dynamique Du Langage (France), Ajou University (South Korea) and HKU analyzed 17 languages and found that all languages convey information at similar rates, regardless of whether they are spoken faster or slower.

Read More: Led News and Led Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to